

Vol 08 Issue 04 April 2019 ISSN 2456 - 5083 Page 1

COPY RIGHT

2019 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works. No Reprint should be done to this paper, all copy right is authenticated

to Paper Authors

IJIEMR Transactions, online available on 17 April 2019.

 Link : http://www.ijiemr.org

Title:- A Survey on SAE Large-Scale Social Networks Using Cloud Data Analysis Service.

Volume 08, Issue 04, Pages: 239 - 244.

Paper Authors

NUKALA BINDU, K.N.VENKATESWARA RAO.

Department of MCA, SKBR PG College.

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

 To Secure Your Paper As Per UGC Approvals We Are Providing A Electronic Bar

Code

http://www.ijiemr.org/

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 239

A SURVEY ON SAE LARGE-SCALE SOCIAL NETWORKS USING CLOUD

DATA ANALYSIS SERVICE
1
NUKALA BINDU,

2
K.N.VENKATESWARA RAO

1
PG Scholar, Department of MCA, SKBR PG College, Amalapuram

2
Assistant Professor, Department of MCA, SKBR PG College, Amalapuram

ABSTRACT: Social network analysis is used to extract features of human communities and proves to

be very instrumental in a variety of scientific domains. The dataset of a social network is often so large

that a cloud data analysis service, in which the computation is performed on a parallel platform in the

could, becomes a good choice for researchers not experienced in parallel programming. In the cloud, a

primary challenge to efficient data analysis is the computation and communication skew (i.e., load

imbalance) among computers caused by humanity’s group behavior (e.g., bandwagon effect).

Traditional load balancing techniques either require significant effort to re-balance loads on the nodes,

or cannot well cope with stragglers. In this paper, we propose a general straggler-aware execution

approach, SAE, to support the analysis service in the cloud. It offers a novel computational

decomposition method that factors straggling feature extraction processes into more fine-grained sub-

processes, which are then distributed over clusters of computers for parallel execution. Experimental

results show that SAE can speed up the analysis by up to 1.77 times compared with state-of-the-art

solutions.

 KEY WORDS: Cloud service, Social network analysis, Computational skew, Communication skew,

Computation decomposition.

I.INTRODUCTION

OCIAL network analysis is used to extract

features, such as neighbors and ranking scores,

from social network datasets, which help

understand human societies. With the

emergence and rapid development of social

applications and models, such as disease

modeling, marketing, recommender systems,

search engines and propagation of influence in

social network, social network analysis is

becoming an increasingly important service

In the cloud. For example, k-NN [1], [2] is

employed in proximity search, statistical

classification, recommendation systems,

internet marketing and so on. Another example

is k-means [3], which is widely used in market

segmentation, decision support and so on.

Other algorithms include connected component

[4], [5], katz metric [6], [7], adsorption [8],

SSSP [13] and so on. These algorithms often

need to repeat the same process round by round

until the computing satisfies a convergence or

stopping condition. In order to accelerate the

execution, the data objects are distributed over

clusters to achieve parallelism. However,

because of the humanity’s group behavior [14],

[15], [16], [17], the key routine of social net-

work analysis, namely feature extraction

process (FEP), suffers from serious

computational and communication skew in the

cloud. Specifically, some FEPs need much

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 240

more computation and communication in each

iteration than others. Take the widely used data

set of Twitter web graph [18] as an example,

less than one percent of the vertices are

adjacent to nearly half of all edges. It means

that tasks hosting this small fraction of vertices

may require many times more computation and

communication than an average task does.

Moreover, the involved data dependency graph

of FEPs may be known only at execution time

and changes dynamically. It not only makes it

hard to evaluate each task’s load, but also

leaves some computers underutilized after the

convergence of most features in early

iterations.

 In the PageRank algorithm running on a

Twitter web graph, for example, the majority of

the vertices require only a single update to get

their ranking scores, while about 20% of the

vertices require more than 10 updates to

converge. This implies that many computers

may become idle in a few iterations, while

others are left as stragglers burdened with

heavy workloads. Current load balancing

solutions try to mitigate load skew either at task

level or at worker level. At the task level, these

solutions partition the data set according to

profiled load cost [19], or use PowerGraph [20]

for static graph, which partitions edges of each

vertex to get balance among tasks. The former

method is quite expensive, as it has to

periodically profile load cost of each data

object. PowerGraph [20] can only statically

partition computation for graphs with fixed

dependencies and therefore cannot adaptively

redistribute sub-processes over nodes to

maximize the utilization of computation

resources.

At the worker level, the state-of-the-art

solutions, namely persistence-based load

balancers (PLB) [21] and retentive work

stealing (RWS) [21], can dynamically balance

load via tasks redistribution/stealing according

to the profiled load from the previous

iterations. However, they cannot support the

computation decomposition of straggling FEPs.

The task partitioning for them mainly considers

evenness of data size, and so the corresponding

tasks may not be balanced in load. This may

cause serious computational and

communication skew during the execution of

program. In practice, we observe that a

straggling FEP is largely decomposable,

because each feature is an aggregated result

from individual data objects.

As such, it can be factored into several sub-

processes which perform calculation on the

data objects in parallel. Based on this

observation, we propose a general straggler-

aware computational partition and distribution

approach, named SAE, for social network

analysis. It not only parallelizes the major part

of straggling FEPs to accelerate the

convergence of feature calculation, but also

effectively uses the idle time of computers

when available. Meanwhile, the remaining non-

decomposable part of a straggling FEP is

negligible which minimizes the straggling

effect. We have implemented a programming

model and a runtime system for SAE.

Experimental results show that it can speed up

social network analysis by a factor of 1.77

compared with PowerGraph. Besides, it also

produces a speedup of 2.23 against PUC [19],

which is a state-of-the-art task-level load

balancing scheme. SAE achieves speedups of

2.69 and 2.38 against PLB [21] and RWS [21],

respectively, which are two state-of-the-art

worker level load balancing schemes. In

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 241

summary, we make the following three

contributions:

1) A general approach to supporting efficient

social network analysis, using the fact the FEP

is largely decomposable. The approach

includes a method to identify straggling FEPs,

a technique to factor FEP into sub-processes

and to adaptively distribute these sub-processes

over computers.

2) A programming model along with an

implementation of the runtime system, which

efficiently supports such an approach.

3) Extensive experimental results showing the

advantages of SAE over the existing solutions.

II. MOTIVATION

Social network analysis is used to analyze the

behavior of human communities. However,

because of human’s group behavior, some

FEPs may need large amounts of computation

and communication in each iteration, and may

take many more iterations to converge than

others. This may generate stragglers which

slow down the analysis process. Consider a

Twitter follower graph [18], [22] containing

41.7 million vertices and 1.47 billion edges.It

can be seen that less than one percent of the

vertices in the graph are adjacent to nearly half

of the edges. Also, most vertices have less than

ten neighbors, and most of them choose to

follow the same vertices because of the

collective behavior of humanity. This implies

that tasks hosting these small percentage of

vertices will assume enormous computation

load while others are left underloaded. With

persistence-based load balancers [21] and

retentive work stealing [21], which cannot

support the computation decomposition of

straggling FEPs, high load imbalance will be

generated for the analysis program. For some

applications, the data dependency graph of

FEPs may be known only at run time and may

change dynamically.

This not only makes it hard to evaluate each

task’s load, but also leaves some computers

underutilized after the convergence of

mostfeatures in early iterations. the distribution

of update counts after a dynamic PageRank

algorithm converges on the twitter follower

graph. From this figure, we can observe that the

majority of the vertices require only a single

update, while about 20% of the vertices require

more than 10 updates to reach convergence.

Again, this means that some computers will

undertake much more workload than others.

However, to tackle this challenge, the tasklevel

load balancing approach based on profiled load

cost [19] has to pay significant overhead to

periodically profile load cost for each data

object and to divide the whole data set in

iterations. For PowerGraph [20], which tends to

statically factor computation tasks according to

the edge distribution of graphs, this challenge

also renders this static task planning ineffective

and leaves some computers underutilized,

especially when most features have converged

in early iteration.

III. PROPOSED SYSTEM

In reality, the computation decomposition

approach proposed for the processing of a

feature can be mainly abstracted as follows:

1) receive the values of related features and

calculate several needed local attributes for this

feature according to received value;

2) when all the local attributes needed by this

feature are calculated and available, gather and

accumulate these attributes for this feature;

3) calculate the new value of this feature based

on the above accumulated attributes, then

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 242

diffuse the new value of this feature to related

features for the next iteration.

 The whole execution progress of a feature can

be depicted in Fig. 1. To support such a data-

centric programming model, several interfaces

are provided. The interfaces that require

application developers to instantiate are

summarized. The decomposable part is factored

into several sub-processes, which are abstracted

by Extra(). These sub-processes are distributed

and executed over workers by runtime. The

Barrier() contained in system code

SysBarrier().When all those attribute values

needed by a set of features are available, Acc()

contained in SysBarrier() will be triggered and

executed on a worker to accumulate the results

of related Extra() for this set of features. Then

it calculates and outputs the new value of these

features for the next iteration. In reality, Acc()

is the nondecomposable part of FEP.

 In the following part, we take the PageRank

algorithm as an example to show how to use

the above programming model to meet the

challenges of straggling feature. PageRank is a

popular algorithm proposed for ranking web

pages. Formally, the web linkage graph is a

graph where the node set V is the set of web

pages, and there is an edge from node i to node

j if there is a hyperlink from page i to page j.

To efficiently support the distribution and

execution of sub-processes, a system, namely

SAE, is realized. It is implemented in the

Piccolo [23] programming model.

Fig. 1: ARCHITECTUREOF SAE

The architecture of SAE is presented in Fig. 5.

It contains a master and multiple workers. The

master monitors status of workers and detects

the termination condition for applications. Each

worker receives messages, triggers related

Extra() operations to process these messages

and calculates new value for features as well. In

order to reduce communication cost, SAE also

aggregates these messages that are sent to the

same node. Each worker loads a subset of data

objects into memory for processing. All data

objects on a worker are maintained in a local

in-memory key-value store, namely state table.

Each table entry corresponds toa data object

indexed by its key and contains three fields.

The first field stores the key value j of a data

object, the second its value; and the third the

index corresponding to its feature recorded in

the following table.

To store the value of features, a feature table is

also needed, which is indexed by the key of

features. Each table entry of this table contains

four fields. The first field stores the key value j

of a feature, the second its iteration number, the

third its value in the current iteration; and the

fourth the attribute list. At the first iteration,

SAE only divides all data objects into equally-

sized partitions. Then it can get the load of each

FEP from the finished iteration. With this

information, in the subsequent iterations, each

worker can identify straggling features and

partition their related value set into a proper

number of blocks according to the ability of

each worker.

In this way, it can create more chances for the

straggling FEPs to be executed and achieve

rough load balance among tasks. At the same

time, the master detects whether there is

necessity to redistribute blocks according to its

gained benefits and the related cost, after

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 243

receiving the profiled remaining load of each

worker, or when some workers become idle.

Note that the remaining load of each worker

can be easily obtained by scanning the number

of unprocessed blocks and the number of

values in these blocks in an approximate way.

While the new iteration proceeds as follows in

an asynchronously way without the finish of

block redistribution, because only the

unprocessed blocks are migrated. When a

diffused message is received by a worker, it

triggers an Extra() operation and makes it

process a block of values contained in this

message. After the completion of each Extra(),

it sends its results to the worker w, where the

feature’s original information is recorded on

this worker’s feature table.

 After receiving this message, worker w records

the availability of this block on its

synchronization table and stores the results,

where these records will be used by Barrier() in

SysBarrier() to determine whether all needed

attributes are available for related features.

Then SysBarrier() is triggered on this worker.

When all needed attributes are available for a

specified feature, the related Acc() contained in

SysBarrier() is triggered and used to

accumulate all calculated results of distributed

decomposable parts for this feature. Then Acc()

is employed to calculate a new value of this

feature for the next iteration. After the end of

this iteration, this feature’s new value is

diffused to specified other features for the next

iteration to process. At the same time, to

eliminate the communication skew occurred at

the value diffusion stage, these new values are

diffused in a hierarchical way. In this way, the

communication cost is also evenly distributed

over clusters at the value diffusion stage.

IV. RESULTS

fig. 2: communicational skew comparison

V. CONCLUSION

This paper identifies that the most

computational part of straggling FEP is

decomposable. Based on this observation, it

proposes a general approach to factor

straggling FEP into several sub-processes along

with a method to adaptively distribute these

sub-processes over workers in order to

accelerate its convergence. Later, this paper

also provides a programming model along with

an efficient runtime to support this approach.

Experimental results show that it can greatly

improve the performance of social network

analysis against state-of-the-art approaches.

VI. REFERENCES

[1] Z. Song and N. Roussopoulos, “K-nearest

neighbor search for moving query point,”

Lecture Notes in Computer Science, vol. 2121,

pp. 79–96, July 2001.

 [2] X. Yu, K. Q. Pu, and N. Koudas,

“Monitoring k-nearest neighbor queries over

moving objects,” in Proceedings of the 21st

International Conference on Data Engineering.

IEEE, 2005, pp. 631–642.

 [3] T. Kanungo, D. M. Mount, N. S.

Netanyahu, C. D. Piatko, R. Silverman, and A.

Y. Wu, “An efficient k-means clustering

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 244

algorithm: Analysis and implementation,”

IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24, no. 7, pp. 881–
892, July 2002.

[4] L. Di Stefano and A. Bulgarelli, “A simple

and efficient connected components labeling

algorithm,” in Proceedings of the International

Conference on Image Analysis and Processing.

IEEE, 1999, pp. 322–327.

[5] E. Deelman, G. Singh, M.-H. Su, J. Blythe,

Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.

Berriman, J. Good et al., “Pegasus: A

framework for mapping complex scientific

workflows onto distributed systems,” Scientific

Programming, vol. 13, no. 3, pp. 219–237,

January 2006.

[6] L. Katz, “A new status index derived from

sociometric analysis,” Psychometrika, vol. 18,

no. 1, pp. 39–43, March 1953.

 [7] D. Liben-Nowell and J. Kleinberg, “The

link prediction problem for social networks,” in

Proceedings of the 12th international

conference on Information and knowledge

management. ACM, 2003, pp. 556–559.

[8] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J.

Yagnik, S. Kumar, D. Ravichandran, and M.

Aly, “Video suggestion and discovery for

youtube: taking random walks through the view

graph,” in Proceedings of the 17th international

conference on World Wide Web. ACM, 2008,

pp. 895–904.

 [9] S. Brin and L. Page, “The anatomy of a

large-scale hypertextual web search engine,”

Computer networks and ISDN systems, vol. 30,

no. 1, pp. 107–117, April 1998.

[10] S. Baluja, R. Seth, D. Sivakumar, Y. Jing,

J. Yagnik, S. Kumar, D. Ravichandran, and M.

Aly, “Video suggestion and discovery for

youtube: taking random walks through the view

graph,” in Proceedings of the 17th international

conference on World Wide Web. ACM, 2008,

pp. 895–904.

