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ABSTRACT: Social network analysis is used to extract features of human communities and proves to 

be very instrumental in a variety of scientific domains. The dataset of a social network is often so large 

that a cloud data analysis service, in which the computation is performed on a parallel platform in the 

could, becomes a good choice for researchers not experienced in parallel programming. In the cloud, a 

primary challenge to efficient data analysis is the computation and communication skew (i.e., load 

imbalance) among computers caused by humanity’s group behavior (e.g., bandwagon effect). 

Traditional load balancing techniques either require significant effort to re-balance loads on the nodes, 

or cannot well cope with stragglers. In this paper, we propose a general straggler-aware execution 

approach, SAE, to support the analysis service in the cloud. It offers a novel computational 

decomposition method that factors straggling feature extraction processes into more fine-grained sub-

processes, which are then distributed over clusters of computers for parallel execution. Experimental 

results show that SAE can speed up the analysis by up to 1.77 times compared with state-of-the-art 

solutions. 

 

 KEY WORDS: Cloud service, Social network analysis, Computational skew, Communication skew, 

Computation decomposition. 

 

I.INTRODUCTION 

OCIAL network analysis is used to extract 

features, such as neighbors and ranking scores, 

from social network datasets, which help 

understand human societies. With the 

emergence and rapid development of social 

applications and models, such as disease 

modeling, marketing, recommender systems, 

search engines and propagation of influence in 

social network, social network analysis is 

becoming an increasingly important service  

In the cloud. For example, k-NN [1], [2] is 

employed in proximity search, statistical 

classification, recommendation systems, 

internet marketing and so on. Another example 

is k-means [3], which is widely used in market 

segmentation, decision support and so on.  

Other algorithms include connected component 

[4], [5], katz metric [6], [7], adsorption [8], 

SSSP [13] and so on. These algorithms often 

need to repeat the same process round by round 

until the computing satisfies a convergence or 

stopping condition. In order to accelerate the 

execution, the data objects are distributed over 

clusters to achieve parallelism. However, 

because of the humanity’s group behavior [14], 

[15], [16], [17], the key routine of social net-

work analysis, namely feature extraction 

process (FEP), suffers from serious 

computational and communication skew in the 

cloud. Specifically, some FEPs need much 
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more computation and communication in each 

iteration than others. Take the widely used data 

set of Twitter web graph [18] as an example, 

less than one percent of the vertices are 

adjacent to nearly half of all edges. It means 

that tasks hosting this small fraction of vertices 

may require many times more computation and 

communication than an average task does. 

Moreover, the involved data dependency graph 

of FEPs may be known only at execution time 

and changes dynamically. It not only makes it 

hard to evaluate each task’s load, but also 

leaves some computers underutilized after the 

convergence of most features in early 

iterations. 

 In the PageRank algorithm running on a 

Twitter web graph, for example, the majority of 

the vertices require only a single update to get 

their ranking scores, while about 20% of the 

vertices require more than 10 updates to 

converge. This implies that many computers 

may become idle in a few iterations, while 

others are left as stragglers burdened with 

heavy workloads. Current load balancing 

solutions try to mitigate load skew either at task 

level or at worker level. At the task level, these 

solutions partition the data set according to 

profiled load cost [19], or use PowerGraph [20] 

for static graph, which partitions edges of each 

vertex to get balance among tasks. The former 

method is quite expensive, as it has to 

periodically profile load cost of each data 

object. PowerGraph [20] can only statically 

partition computation for graphs with fixed 

dependencies and therefore cannot adaptively 

redistribute sub-processes over nodes to 

maximize the utilization of computation 

resources.  

At the worker level, the state-of-the-art 

solutions, namely persistence-based load 

balancers (PLB) [21] and retentive work 

stealing (RWS) [21], can dynamically balance 

load via tasks redistribution/stealing according 

to the profiled load from the previous 

iterations. However, they cannot support the 

computation decomposition of straggling FEPs. 

The task partitioning for them mainly considers 

evenness of data size, and so the corresponding 

tasks may not be balanced in load. This may 

cause serious computational and 

communication skew during the execution of 

program. In practice, we observe that a 

straggling FEP is largely decomposable, 

because each feature is an aggregated result 

from individual data objects.  

As such, it can be factored into several sub-

processes which perform calculation on the 

data objects in parallel. Based on this 

observation, we propose a general straggler-

aware computational partition and distribution 

approach, named SAE, for social network 

analysis. It not only parallelizes the major part 

of straggling FEPs to accelerate the 

convergence of feature calculation, but also 

effectively uses the idle time of computers 

when available. Meanwhile, the remaining non-

decomposable part of a straggling FEP is 

negligible which minimizes the straggling 

effect. We have implemented a programming 

model and a runtime system for SAE. 

Experimental results show that it can speed up 

social network analysis by a factor of 1.77 

compared with PowerGraph. Besides, it also 

produces a speedup of 2.23 against PUC [19], 

which is a state-of-the-art task-level load 

balancing scheme. SAE achieves speedups of 

2.69 and 2.38 against PLB [21] and RWS [21], 

respectively, which are two state-of-the-art 

worker level load balancing schemes. In 
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summary, we make the following three 

contributions:  

1) A general approach to supporting efficient 

social network analysis, using the fact the FEP 

is largely decomposable. The approach 

includes a method to identify straggling FEPs, 

a technique to factor FEP into sub-processes 

and to adaptively distribute these sub-processes 

over computers.  

2) A programming model along with an 

implementation of the runtime system, which 

efficiently supports such an approach.  

3) Extensive experimental results showing the 

advantages of SAE over the existing solutions. 

 

II. MOTIVATION 

Social network analysis is used to analyze the 

behavior of human communities. However, 

because of human’s group behavior, some 

FEPs may need large amounts of computation 

and communication in each iteration, and may 

take many more iterations to converge than 

others. This may generate stragglers which 

slow down the analysis process. Consider a 

Twitter follower graph [18], [22] containing 

41.7 million vertices and 1.47 billion edges.It 

can be seen that less than one percent of the 

vertices in the graph are adjacent to nearly half 

of the edges. Also, most vertices have less than 

ten neighbors, and most of them choose to 

follow the same vertices because of the 

collective behavior of humanity. This implies 

that tasks hosting these small percentage of 

vertices will assume enormous computation 

load while others are left underloaded. With 

persistence-based load balancers [21] and 

retentive work stealing [21], which cannot 

support the computation decomposition of 

straggling FEPs, high load imbalance will be 

generated for the analysis program. For some 

applications, the data dependency graph of 

FEPs may be known only at run time and may 

change dynamically.  

This not only makes it hard to evaluate each 

task’s load, but also leaves some computers 

underutilized after the convergence of 

mostfeatures in early iterations. the distribution 

of update counts after a dynamic PageRank 

algorithm converges on the twitter follower 

graph. From this figure, we can observe that the 

majority of the vertices require only a single 

update, while about 20% of the vertices require 

more than 10 updates to reach convergence. 

Again, this means that some computers will 

undertake much more workload than others. 

However, to tackle this challenge, the tasklevel 

load balancing approach based on profiled load 

cost [19] has to pay significant overhead to 

periodically profile load cost for each data 

object and to divide the whole data set in 

iterations. For PowerGraph [20], which tends to 

statically factor computation tasks according to 

the edge distribution of graphs, this challenge 

also renders this static task planning ineffective 

and leaves some computers underutilized, 

especially when most features have converged 

in early iteration. 

 

III. PROPOSED SYSTEM 

In reality, the computation decomposition 

approach proposed for the processing of a 

feature can be mainly abstracted as follows:  

1) receive the values of related features and 

calculate several needed local attributes for this 

feature according to received value;  

2) when all the local attributes needed by this 

feature are calculated and available, gather and 

accumulate these attributes for this feature; 

3) calculate the new value of this feature based 

on the above accumulated attributes, then 
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diffuse the new value of this feature to related 

features for the next iteration. 

 The whole execution progress of a feature can 

be depicted in Fig. 1. To support such a data-

centric programming model, several interfaces 

are provided. The interfaces that require 

application developers to instantiate are 

summarized. The decomposable part is factored 

into several sub-processes, which are abstracted 

by Extra(). These sub-processes are distributed 

and executed over workers by runtime. The 

Barrier() contained in system code 

SysBarrier().When all those attribute values 

needed by a set of features are available, Acc() 

contained in SysBarrier() will be triggered and 

executed on a worker to accumulate the results 

of related Extra() for this set of features. Then 

it calculates and outputs the new value of these 

features for the next iteration. In reality, Acc() 

is the nondecomposable part of FEP. 

 In the following part, we take the PageRank 

algorithm as an example to show how to use 

the above programming model to meet the 

challenges of straggling feature. PageRank is a 

popular algorithm proposed for ranking web 

pages. Formally, the web linkage graph is a 

graph where the node set V is the set of web 

pages, and there is an edge from node i to node 

j if there is a hyperlink from page i to page j. 

To efficiently support the distribution and 

execution of sub-processes, a system, namely 

SAE, is realized. It is implemented in the 

Piccolo [23] programming model.  

 
Fig. 1: ARCHITECTUREOF SAE 

The architecture of SAE is presented in Fig. 5. 

It contains a master and multiple workers. The 

master monitors status of workers and detects 

the termination condition for applications. Each 

worker receives messages, triggers related 

Extra() operations to process these messages 

and calculates new value for features as well. In 

order to reduce communication cost, SAE also 

aggregates these messages that are sent to the 

same node. Each worker loads a subset of data 

objects into memory for processing. All data 

objects on a worker are maintained in a local 

in-memory key-value store, namely state table. 

Each table entry corresponds toa data object 

indexed by its key and contains three fields. 

The first field stores the key value j of a data 

object, the second its value; and the third the 

index corresponding to its feature recorded in 

the following table.  

To store the value of features, a feature table is 

also needed, which is indexed by the key of 

features. Each table entry of this table contains 

four fields. The first field stores the key value j 

of a feature, the second its iteration number, the 

third its value in the current iteration; and the 

fourth the attribute list. At the first iteration, 

SAE only divides all data objects into equally-

sized partitions. Then it can get the load of each 

FEP from the finished iteration. With this 

information, in the subsequent iterations, each 

worker can identify straggling features and 

partition their related value set into a proper 

number of blocks according to the ability of 

each worker.  

In this way, it can create more chances for the 

straggling FEPs to be executed and achieve 

rough load balance among tasks. At the same 

time, the master detects whether there is 

necessity to redistribute blocks according to its 

gained benefits and the related cost, after 
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receiving the profiled remaining load of each 

worker, or when some workers become idle. 

Note that the remaining load of each worker 

can be easily obtained by scanning the number 

of unprocessed blocks and the number of 

values in these blocks in an approximate way. 

While the new iteration proceeds as follows in 

an asynchronously way without the finish of 

block redistribution, because only the 

unprocessed blocks are migrated. When a 

diffused message is received by a worker, it 

triggers an Extra() operation and makes it 

process a block of values contained in this 

message. After the completion of each Extra(), 

it sends its results to the worker w, where the 

feature’s original information is recorded on 

this worker’s feature table. 

 After receiving this message, worker w records 

the availability of this block on its 

synchronization table and stores the results, 

where these records will be used by Barrier() in 

SysBarrier() to determine whether all needed 

attributes are available for related features. 

Then SysBarrier() is triggered on this worker. 

When all needed attributes are available for a 

specified feature, the related Acc() contained in 

SysBarrier() is triggered and used to 

accumulate all calculated results of distributed 

decomposable parts for this feature. Then Acc() 

is employed to calculate a new value of this 

feature for the next iteration. After the end of 

this iteration, this feature’s new value is 

diffused to specified other features for the next 

iteration to process. At the same time, to 

eliminate the communication skew occurred at 

the value diffusion stage, these new values are 

diffused in a hierarchical way. In this way, the 

communication cost is also evenly distributed 

over clusters at the value diffusion stage. 

 

IV. RESULTS 

 

fig. 2: communicational skew comparison 

 

V. CONCLUSION 

This paper identifies that the most 

computational part of straggling FEP is 

decomposable. Based on this observation, it 

proposes a general approach to factor 

straggling FEP into several sub-processes along 

with a method to adaptively distribute these 

sub-processes over workers in order to 

accelerate its convergence. Later, this paper 

also provides a programming model along with 

an efficient runtime to support this approach. 

Experimental results show that it can greatly 

improve the performance of social network 

analysis against state-of-the-art approaches. 
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