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ABSTRACT:  Web based services involve distribution of content like digital audio, video, software, 

games, stock quotes, streaming presentations, and live news feeds through distributed networking 

technologies, like Content Distribution Networks (CDN’s), multicast networks, and peer-to-peer 

networks. We protect delay sensitive streams against malicious attacks, security mechanisms and 

auditing mechanisms need to be designed to efficiently process long sequence of bits. We propose a 

novel signature amortization technique based on trapdoor hash functions for authenticating each and 

every individual data blocks in the stream. Our technique provides for each and every intermediate 

blocks in the stream we want to avoid the transmission loss and we will provide constant memory 

requirements for sender as well as receiver and we want to authenticate and verify the stream to avoid 

unauthenticated user and to avoid malicious content.  
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I.INTRODUCTION 

ANY web-based services involve distribution 

of content like digital audio, video, software, 

games, stock quotes, streaming presentations, 

and live news feeds through distributed 

networking technologies, like content 

distribution networks (CDN’s), multicast 

networks, and peer-to-peer networks. 

Unfortunately, these modern distributed 

systems, designed to distribute content to a 

large group of users, also provide a platform for 

adversarial users to launch a myriad attacks 

with widespread consequences. Adversaries 

can masquerade as legitimate content providers 

to distribute malicious content possibly infected 

with worms, viruses, etc. Adversaries can also 

place themselves in the content distribution 

path, for example, by compromising web 

caches [1], and modify the content in ways that 

can potentially harm client devices. 

Authenticating the content plays a crucial role 

in preventing these attacks.  

Although CDNs like Akamai employ 

mechanisms for providing physical security, 

host system security, access control, software 

reliability and integrity, and 24 7 monitoring 

and response, these mechanisms are primarily 

designed for providing security of the CDN’s 

service network infrastructure and ensuring 

proper functioning of its distributed network of 

servers, rather than protecting content 

distributed through the CDN [2]. The task of 

protecting content is the responsibility of 

content providers. Popular content providers 

often provide highly personalized user 

experience by inserting targeted advertisements 

and dynamically generated content. Today 

majority of mass-viewed content is 
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dynamically generated and rich in multimedia 

that include combination of text, audio, still 

images, animation, video, and interactive 

content forms that are gathered from a myriad 

of sources, assembled and presented to the user.  

In such scenarios, malicious modification of 

content by malicious sources becomes a 

legitimate threat. To highlight this point, 

recently, Google and MSN (Microsoft(R)) were 

observed to be distributing malware after 

attackers were able to trick the networks by 

masquerading as a legitimate advertising 

provider and inserting malicious 

advertisements (by exploiting two Internet 

Explorer, one Java, and four Adobe Reader 

flaws) that installed the HDD Plus malware [3]. 

YouTube was also a victim of an attack where 

malicious code was inserted into pages (by 

exploiting a cross-site scripting vulnerability) 

displaying the targeted videos that would 

launch when users opened the video clip 

redirecting users to pornographic sites and 

display falsified news alerts [4]. While flaws in 

software that were exploited were eventually 

patched, these attacks could be prevented by 

using authentication mechanisms to protect the 

content.  

Using conventional techniques for message 

authentication require the sender and the 

receiver to have the ability to store the entire 

message before processing the message. 

However, in most instances of distributing 

content like digitized multimedia, the content 

provider transmits the content in the form of 

digital streams that receivers consume at more 

or less the stream arrival rate without excessive 

delay. To protect such delay-sensitive digital 

streamsagainst malicious attacks, security 

mechanisms must efficiently process long 

sequence of bits in a manner that allows 

receivers to verify the authenticity of the stream 

in portions (to avoid possessing the entire 

stream before verification) without excessive 

processing delays associated with each portion 

of the stream. This is typically done by dividing 

the stream into blocks (or chunks) and using an 

efficient security mechanism to secure each 

block of data. 

 Efficient processing of streams, both at servers 

and clients, is critical as the Internet continues 

to grow, server loads continue to increase, and 

the amount of Internet traffic continues to 

grow. In a 2011 conference presentation, Intel 

projected that by 2015, the Internet will 

connect more than a billion people and more 

than 15 billion devices [5]. Among the factors 

fueling this growth is the recent explosion of 

Internet-enabled mobile devices like 

smartphones and tablets (such as those powered 

by iOS, Android, and Windows Phone 

operating systems) [6], televisions, and incar 

entertainment systems into the marketplace. A 

recent news article presented an estimate by 

Intel that a new server needs to be deployed for 

every 120 tablets or 600 smartphones hitting 

the market [7].  

These trends strongly motivate the need to 

design a stream authentication scheme that 

incurs low overheads for signing (to reduce 

server load), communication (to reduce 

bandwidth consumption), and verification (to 

ensure mobile devices can cope with the 

additional processing). In this paper, we focus 

on the problem of efficient stream 

authentication using digital signatures. The 

goal is to provide integrity, origin 

authentication, and nonrepudiation for 

individual blocks that comprise a digital 

stream. The problem. Efficient authentication 

of stream poses several challenges:  
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1. Authentication of delay-sensitive streams 

requires high verification rates which translates 

to requiring minimal computational overhead to 

verify individual blocks and avoiding excessive 

accumulation of data in buffers before 

verification can proceed. For instance, to 

maintain jitter-free playback of ondemand 

media distributed through CDNs, per-block 

verification rates at client devices must equal or 

exceed the rate at which blocks arrive at the 

device. 

 2. For real-time generated digital streams, a 

sender must be able to sign a block as soon as it 

is generated with minimal computational 

overhead. For instance, to prevent delays in 

distribution of real-time content like stock 

quotes and live news feeds that can influence 

critical business decisions, per-block signing 

rates at content originators must exceed the rate 

at which blocks are generated.  

3. Stream transmission is typically done using 

unreliable transport protocols like UDP to 

provide a high throughput, which can cause 

loss of datagrams during transmission. Thus, 

stream authentication mechanisms must be 

designed to tolerate arbitrary loss of data blocks 

without affecting the ability of a receiver to 

verify remaining blocks. 

 4. Authenticating information such as 

signatures and hash values placed within a 

block (which we call perblock communication 

overhead) must be limited to a small, constant 

size to prevent excessive bandwidth utilization 

while transmitting signed streams. 

 

II. RELATED WORK 

In this section, we discuss related work on 

trapdoor hash functions and stream 

authentication schemes. Trapdoor hash 

functions. Trapdoor hash functions are 

collision-resistant hash functions containing a 

trapdoor for finding collisions. A trapdoor hash 

function is associated with a (private, public) 

key pair, also referred to as a (trapdoor, hash) 

key. Collisions are difficult to find without the 

knowledge of the trapdoor key. However, given 

the trapdoor key along with the trapdoor hash 

on a message, it is feasible to find a collision. 

The concept of a trapdoor hash function was 

originally derived from the notion of trapdoor 

commitments proposed by Brassard et al. [9]; 

Krawczyk and Rabin [10] used trapdoor hash 

functions (referred to as chameleon hash) to 

construct a noninteractive nontransferable 

signature scheme, called chameleon signatures 

(closely related to undeniable signatures), 

under the hash-and-sign paradigm. Chameleon 

signature allows a signer to undeniably commit 

to the contents of a signed document, but does 

not allow the recipient of the signature to 

disclose the signer’s commitment to a third 

party without the signer’s consent. Shamir and 

Tauman [8] employed trapdoor hash functions 

to develop a new paradigm, called hash-sign-

switch, that can be used to convert any 

signature scheme into an online/offline 

signature scheme [11]. In online/offline 

signature schemes, the signature generation 

procedure is split into two phases that are 

performed offline (before the message to be 

signed is known) and online (after the message 

is known). Ateniese and de Medeiros [12] 

introduced the first identity-based trapdoor 

hash functions and designed a novel sealed-bid 

auction scheme based on the identity-based 

chameleon signatures, where all bid remain 

hidden until the auction ends. 

 Later, Chen et al. [13] introduced the problem 

of key exposure in existing trapdoor hash 

functions and presented a trapdoor hashing 
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scheme in the gap Diffie-Hellman group with 

bilinear pairings to solve the problem of key 

exposure. The key exposure problem results in 

the compromise of the (private) trapdoor key in 

the presence of a pair of messages with the 

same trapdoor hash value. Later, Ateniese and 

de Medeiros [14] presented additional 

constructions of key exposure-free trapdoor 

hash functions that were based on more 

efficient cryptographic primitives compared to 

pairing-based operations. More recently, Mehta 

and Harn [15] introduced the idea of using 

trapdoor hash functions to build one-time proxy 

signatures [16] by exploiting the key-exposure 

property of trapdoor hash functions. 

Chandrasekhar et al. [17] presented a provably 

secure generic technique to build proxy 

signature schemes using trapdoor hash 

functions in the random oracle model. Unlike 

the scheme by Mehta and Harn, the technique 

proposed by Chandrasekhar et al. did not 

restrict the number of signatures a proxy can 

generate on behalf of the delegator. Stream 

authentication.  

Researchers have proposed several techniques 

for stream (or flow) authentication that aim at 

reducing the computation and communication 

overhead associated with securing individual 

blocks that comprise a stream. These 

techniques can be divided into MAC-based 

schemes like TESLA [18] (and its variants) and 

signaturebased schemes like EMSS [18], AC 

[19], SAIDA [20], and WL [21]. While TESLA 

is efficient and robust against data loss, it 

requires time synchronization between a signer 

and a verifier, sufficiently large buffers of all 

unverified blocks (until the verification key is 

received), and storage of long key chains which 

can lead to scalability issues. This makes 

TESLA less suitable for authenticating stream, 

and vulnerable to DoS attacks that cause buffer 

overflow. 

 To reduce per-block overhead, signature-based 

stream authentication techniques either rely on 

amortizing a single signature over multiple 

blocks or designing extremely fast signature 

schemes like k-time signatures [22], BiBa [23], 

HORS [24] and TV-OTS [25] to sign each 

block. Designing extremely fast signature 

schemes often come at the cost of unreasonably 

high storage and communication overheads 

[20], [25], [21] that tend to increase linearly 

with the size of the message that is signed. For 

instance, the HORS scheme (considered more 

efficient than BiBa) generates signatures 

between 2,560 bits and 3,200 bits with public 

keys that are about 10 KiB with reasonable 

sized parameters [24], [25]. Moreover, BiBa 

and HORS require frequent redistribution of 

new public keys (that are very large) to 

maintain the security of the scheme, adding 

significant overheads to the communication and 

storage costs [25]. The TV-OTS scheme avoids 

some problems of the BiBa and HORS 

schemes, but still requires large public keys on 

order of 10KiB, requires time synchronization 

and does not provide long-term nonrepudiation 

as the signatures can be forged by the receiver 

after a reasonable effort [25]. 

 To amortize a signature over multiple blocks 

in a stream, EMSS and AC use hash chains, 

SAIDA splits the signature and hash value of 

each block over multiple blocks, and WL uses 

Merkle trees. EMSS, AC, and SAIDA are 

probabilistic authentication schemes, i.e., the 

ability of a receiver to verify a received block 

depends on whether the receiver has some 

additional blocks of the stream in its possession 

(which inherently requires a verifier to 

maintain a buffer with multiple data blocks)—



 

Volume 08, Issue 04, April 2019                                     ISSN: 2456 - 5083 Page 222 

thus, the probability that a receiver is able to 

verify a block depends on the nature (bursty, 

independent, etc.) and probability of data loss 

during stream transmission. EMSS and AC rely 

on redundant placement of multiple hashes in 

each block to deal with blocks that are lost 

during transmission. SAIDA relies on erasure 

codes to recover from losses. In probabilistic 

authentication schemes, maintaining a 

reasonable probability of verification in the 

presence of high data loss leads to higher per-

block communication overhead and increased 

size of verifier-side data buffer. If per-block 

communication overhead is restricted, 

verification probability drops as data loss 

increases. 

The WL scheme is the only known 

deterministic stream authentication protocol. In 

the WL scheme, a stream is divided into 

segments, with each segment containing 

multiple blocks (in WL each block is a single 

packet). The computational overhead at the 

signer and verifier, the signer’s buffer size, and 

the per-block communication overhead are 

highly dependent on the segment size. When 

segment sizes are small, computational 

overhead at the signer and verifier increases. 

On the other hand, large segment sizes causes 

the signer’s buffer size and the perblock 

communication overhead to increase. With a 

reasonable block size (say, 16 [21]), the signer-

side delay increases (affecting real-time 

performance) along with the per-block 

communication overhead (to a magnitude of 

100’s of bytes). Recently, Lysyanskaya et al. 

[26] proposed a stream authentication 

technique, AECC using error correcting codes 

that is provably secure in a formal adversarial 

network model that limits the capabilities of an 

adversary to inject and delete packets by 

discrete quantities. The AECC scheme only 

requires one signature operation for the entire 

stream and adds only a constant size 

authentication overhead per packet, however, 

requires the sender to possess the entire stream 

before signing. This limits the application of 

the AECC scheme to delay-sensitive content 

and cannot be applied to real-time generated 

content. 

 

III. PROPOSED SYSTEM 

 

Fig. 1: PROPOSED SYSTEM 

 

Fig 1 shows system architecture of content 

distribution network. The components include 

the core data center, web cache and it serving 

the multiple clients and the back end of the 

content distribution network is internet or wan 

and the data centers. The caches should be 

distributed widely and serving the requested 

clients. Both the core data centers and web 

caches contains media server and the content 

distribution manager. 

The media content should be stored in the 

media servers and it should serve the content in 

both the real time as well as on demand users. 

Clients can include laptops, tablets and mobile 

phones. A content distribution manager has the 

following functionalities  

 Tracking or auditing or monitoring the 

content usage by the clients and accounting the 

usage of their respective clients.  
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 The contents requested by the clients should 

be fetched from the media server and partition 

the file into multiple blocks and transmitting 

the requesting blocks into appropriate clients.  

 If the client requested the digital media 

content the request should be sent to closest 

web cache of the client. If the web cache 

contains the request which will be ask by the 

client it should be fetched and transmits to the 

client. 

  If the request is not in the web cache means 

the request should be forwarded to the core 

data center and fetches the data and should 

transmit to the appropriate client. 

 

 A. CONTENT UPLOADING: Server should 

upload the multimedia content was given by the 

content provider and store in a media Server. 

The client can also be allowed to upload the 

multimedia content after the registration 

process is done.  

 

B. STREAM AUTHENTICATION: Stream 

authentication can help prevent some type of 

attacks by providing the ability to sign and 

verify each block in the stream. All content 

originates at the core data center and the stream 

signing mechanism is implemented at the core 

CDM as part of its content processing service. 

We assume the existence of a Public Key 

Infrastructure (PKI) responsible for generating 

certificates for the core CDM, and distributing 

the public key and certificate of the core CDM 

to all verifying entities. When a request arrives 

at the core CDM, the content processing 

service retrieves the content from the media 

server. The core CDM then splits the content it 

into a stream of blocks, signs each block (using 

a suitable signature amortization technique), 

places the authentication information within the 

block, and transmits the signed stream of 

blocks to the requesting entity. If the content is 

not generated in real time, the content 

processing service stores the signed stream at 

the media server to prevent redundant signing 

operations when subsequent requests arrive for 

the same content.  

 

C. STREAM VERIFICATION: Threats 

involved in distribution of content include: 

Compromising attacks, where an adversary 

takes control of legitimate content providing 

hosts (edge cache/core data center/third-party 

provider) to inject malicious content, and Man-

in-the-middle attacks, where an adversary 

performs modification of content during 

transmission from core data center to the edge 

cache or from the edge cache to the client or 

from the core data center to the client. 

Verification of signed streams at edge caches 

ensures that packets failing verification are not 

forwarded to the requesting client, thereby 

preventing unnecessary usage of bandwidth and 

processing time at the client machine. When a 

signed stream arrives at the client machine, the 

requesting application verifies each block in the 

stream and removes the authenticating 

information placed inside the block before 

beginning playback of the media content. 

 

To allow users to be timely and accurately 

informed about their data usage, our distributed 

logging mechanism is complemented by an 

innovative auditing mechanism. We support 

two complementary auditing modes: 1. Push 

mode, 2. Pull mode. 

 

 1. PUSH MODE: In this mode, the logs are 

periodically pushed to the data owner (or 

auditor) by the harmonizer. The push action 
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will be triggered by either type of the following 

two events: one is that the time elapses for a 

certain period according to the temporal timer 

inserted as part of the JAR file, the other is that 

the JAR file exceeds the size stipulated by the 

content owner at the time of creation. After the 

logs are sent to the data owner, the log files will 

be dumped, so as to free the space for future 

access logs. This mode serves two essential 

functions in the logging architecture: a. It 

ensures that the size of the log files does not 

explode b. It enables timely detection and 

correction of any loss or damage to the log 

files.  

 

2. PULL MODE: This mode allows auditors to 

retrieve the logs anytime when they want to 

check the recent access to their own data. The 

pull message consists simply of an FTP pull 

command, which can be issues from the 

command line. For naive users, a wizard 

comprising a batch file can be easily built. The 

request will be sent to the harmonizer, and the 

user will be informed of the data’s locations 

and obtain an integrated copy of the authentic 

and sealed log file. 

 

IV. CONCLUSION 

The authentication flow in the content 

distribution network prevents malicious 

modification or threats in the middle of the data 

transmission. The challenging task is to 

verification and signing for the on demand 

content and the toleranceagainst the 

transmission loss and the communication 

overhead should be small per block. We 

present the authentication of online digitized 

signature using trap door hash function method 

that challenges that meet real time streaming in 

content distribution and provide efficient 

authentication of delay sensitive streams. Our 

the authentication of online digitized signature 

method by authenticating from initial blocks in 

the stream using signature on the trap door hash 

function and by authenticating subsequent 

blocks in the stream. 
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