

Vol 08 Issue 04 April 2019 ISSN 2456 - 5083 Page 1

COPY RIGHT

2019 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works. No Reprint should be done to this paper, all copy right is authenticated

to Paper Authors

IJIEMR Transactions, online available on 17 April 2019.

 Link : http://www.ijiemr.org

Title:- Validating The Traditional Trapdoor Hash Function For Stream Authentication.

Volume 08, Issue 04, Pages: 218 - 225.

Paper Authors

GANGABATTULA V N D KISHORE , N.SRINIVASA RAO.

Department of MCA, SKBR PG College.

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

 To Secure Your Paper As Per UGC Approvals We Are Providing A Electronic Bar

Code

http://www.ijiemr.org/

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 218

VALIDATING THE TRADITIONAL TRAPDOOR HASH FUNCTION FOR

STREAM AUTHENTICATION
1
GANGABATTULA V N D KISHORE ,

2
N.SRINIVASA RAO

1
PG Scholar, Department of MCA, SKBR PG College, Amalapuram

2
Assistant Professor, Department of MCA, SKBR PG College, Amalapuram

ABSTRACT: Web based services involve distribution of content like digital audio, video, software,

games, stock quotes, streaming presentations, and live news feeds through distributed networking

technologies, like Content Distribution Networks (CDN’s), multicast networks, and peer-to-peer

networks. We protect delay sensitive streams against malicious attacks, security mechanisms and

auditing mechanisms need to be designed to efficiently process long sequence of bits. We propose a

novel signature amortization technique based on trapdoor hash functions for authenticating each and

every individual data blocks in the stream. Our technique provides for each and every intermediate

blocks in the stream we want to avoid the transmission loss and we will provide constant memory

requirements for sender as well as receiver and we want to authenticate and verify the stream to avoid

unauthenticated user and to avoid malicious content.

KEY WORDS: Stream authentication, cryptography, content distribution network, trap door

functions.

I.INTRODUCTION

ANY web-based services involve distribution

of content like digital audio, video, software,

games, stock quotes, streaming presentations,

and live news feeds through distributed

networking technologies, like content

distribution networks (CDN’s), multicast

networks, and peer-to-peer networks.

Unfortunately, these modern distributed

systems, designed to distribute content to a

large group of users, also provide a platform for

adversarial users to launch a myriad attacks

with widespread consequences. Adversaries

can masquerade as legitimate content providers

to distribute malicious content possibly infected

with worms, viruses, etc. Adversaries can also

place themselves in the content distribution

path, for example, by compromising web

caches [1], and modify the content in ways that

can potentially harm client devices.

Authenticating the content plays a crucial role

in preventing these attacks.

Although CDNs like Akamai employ

mechanisms for providing physical security,

host system security, access control, software

reliability and integrity, and 24 7 monitoring

and response, these mechanisms are primarily

designed for providing security of the CDN’s

service network infrastructure and ensuring

proper functioning of its distributed network of

servers, rather than protecting content

distributed through the CDN [2]. The task of

protecting content is the responsibility of

content providers. Popular content providers

often provide highly personalized user

experience by inserting targeted advertisements

and dynamically generated content. Today

majority of mass-viewed content is

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 219

dynamically generated and rich in multimedia

that include combination of text, audio, still

images, animation, video, and interactive

content forms that are gathered from a myriad

of sources, assembled and presented to the user.

In such scenarios, malicious modification of

content by malicious sources becomes a

legitimate threat. To highlight this point,

recently, Google and MSN (Microsoft(R)) were

observed to be distributing malware after

attackers were able to trick the networks by

masquerading as a legitimate advertising

provider and inserting malicious

advertisements (by exploiting two Internet

Explorer, one Java, and four Adobe Reader

flaws) that installed the HDD Plus malware [3].

YouTube was also a victim of an attack where

malicious code was inserted into pages (by

exploiting a cross-site scripting vulnerability)

displaying the targeted videos that would

launch when users opened the video clip

redirecting users to pornographic sites and

display falsified news alerts [4]. While flaws in

software that were exploited were eventually

patched, these attacks could be prevented by

using authentication mechanisms to protect the

content.

Using conventional techniques for message

authentication require the sender and the

receiver to have the ability to store the entire

message before processing the message.

However, in most instances of distributing

content like digitized multimedia, the content

provider transmits the content in the form of

digital streams that receivers consume at more

or less the stream arrival rate without excessive

delay. To protect such delay-sensitive digital

streamsagainst malicious attacks, security

mechanisms must efficiently process long

sequence of bits in a manner that allows

receivers to verify the authenticity of the stream

in portions (to avoid possessing the entire

stream before verification) without excessive

processing delays associated with each portion

of the stream. This is typically done by dividing

the stream into blocks (or chunks) and using an

efficient security mechanism to secure each

block of data.

 Efficient processing of streams, both at servers

and clients, is critical as the Internet continues

to grow, server loads continue to increase, and

the amount of Internet traffic continues to

grow. In a 2011 conference presentation, Intel

projected that by 2015, the Internet will

connect more than a billion people and more

than 15 billion devices [5]. Among the factors

fueling this growth is the recent explosion of

Internet-enabled mobile devices like

smartphones and tablets (such as those powered

by iOS, Android, and Windows Phone

operating systems) [6], televisions, and incar

entertainment systems into the marketplace. A

recent news article presented an estimate by

Intel that a new server needs to be deployed for

every 120 tablets or 600 smartphones hitting

the market [7].

These trends strongly motivate the need to

design a stream authentication scheme that

incurs low overheads for signing (to reduce

server load), communication (to reduce

bandwidth consumption), and verification (to

ensure mobile devices can cope with the

additional processing). In this paper, we focus

on the problem of efficient stream

authentication using digital signatures. The

goal is to provide integrity, origin

authentication, and nonrepudiation for

individual blocks that comprise a digital

stream. The problem. Efficient authentication

of stream poses several challenges:

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 220

1. Authentication of delay-sensitive streams

requires high verification rates which translates

to requiring minimal computational overhead to

verify individual blocks and avoiding excessive

accumulation of data in buffers before

verification can proceed. For instance, to

maintain jitter-free playback of ondemand

media distributed through CDNs, per-block

verification rates at client devices must equal or

exceed the rate at which blocks arrive at the

device.

 2. For real-time generated digital streams, a

sender must be able to sign a block as soon as it

is generated with minimal computational

overhead. For instance, to prevent delays in

distribution of real-time content like stock

quotes and live news feeds that can influence

critical business decisions, per-block signing

rates at content originators must exceed the rate

at which blocks are generated.

3. Stream transmission is typically done using

unreliable transport protocols like UDP to

provide a high throughput, which can cause

loss of datagrams during transmission. Thus,

stream authentication mechanisms must be

designed to tolerate arbitrary loss of data blocks

without affecting the ability of a receiver to

verify remaining blocks.

 4. Authenticating information such as

signatures and hash values placed within a

block (which we call perblock communication

overhead) must be limited to a small, constant

size to prevent excessive bandwidth utilization

while transmitting signed streams.

II. RELATED WORK

In this section, we discuss related work on

trapdoor hash functions and stream

authentication schemes. Trapdoor hash

functions. Trapdoor hash functions are

collision-resistant hash functions containing a

trapdoor for finding collisions. A trapdoor hash

function is associated with a (private, public)

key pair, also referred to as a (trapdoor, hash)

key. Collisions are difficult to find without the

knowledge of the trapdoor key. However, given

the trapdoor key along with the trapdoor hash

on a message, it is feasible to find a collision.

The concept of a trapdoor hash function was

originally derived from the notion of trapdoor

commitments proposed by Brassard et al. [9];

Krawczyk and Rabin [10] used trapdoor hash

functions (referred to as chameleon hash) to

construct a noninteractive nontransferable

signature scheme, called chameleon signatures

(closely related to undeniable signatures),

under the hash-and-sign paradigm. Chameleon

signature allows a signer to undeniably commit

to the contents of a signed document, but does

not allow the recipient of the signature to

disclose the signer’s commitment to a third

party without the signer’s consent. Shamir and

Tauman [8] employed trapdoor hash functions

to develop a new paradigm, called hash-sign-

switch, that can be used to convert any

signature scheme into an online/offline

signature scheme [11]. In online/offline

signature schemes, the signature generation

procedure is split into two phases that are

performed offline (before the message to be

signed is known) and online (after the message

is known). Ateniese and de Medeiros [12]

introduced the first identity-based trapdoor

hash functions and designed a novel sealed-bid

auction scheme based on the identity-based

chameleon signatures, where all bid remain

hidden until the auction ends.

 Later, Chen et al. [13] introduced the problem

of key exposure in existing trapdoor hash

functions and presented a trapdoor hashing

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 221

scheme in the gap Diffie-Hellman group with

bilinear pairings to solve the problem of key

exposure. The key exposure problem results in

the compromise of the (private) trapdoor key in

the presence of a pair of messages with the

same trapdoor hash value. Later, Ateniese and

de Medeiros [14] presented additional

constructions of key exposure-free trapdoor

hash functions that were based on more

efficient cryptographic primitives compared to

pairing-based operations. More recently, Mehta

and Harn [15] introduced the idea of using

trapdoor hash functions to build one-time proxy

signatures [16] by exploiting the key-exposure

property of trapdoor hash functions.

Chandrasekhar et al. [17] presented a provably

secure generic technique to build proxy

signature schemes using trapdoor hash

functions in the random oracle model. Unlike

the scheme by Mehta and Harn, the technique

proposed by Chandrasekhar et al. did not

restrict the number of signatures a proxy can

generate on behalf of the delegator. Stream

authentication.

Researchers have proposed several techniques

for stream (or flow) authentication that aim at

reducing the computation and communication

overhead associated with securing individual

blocks that comprise a stream. These

techniques can be divided into MAC-based

schemes like TESLA [18] (and its variants) and

signaturebased schemes like EMSS [18], AC

[19], SAIDA [20], and WL [21]. While TESLA

is efficient and robust against data loss, it

requires time synchronization between a signer

and a verifier, sufficiently large buffers of all

unverified blocks (until the verification key is

received), and storage of long key chains which

can lead to scalability issues. This makes

TESLA less suitable for authenticating stream,

and vulnerable to DoS attacks that cause buffer

overflow.

 To reduce per-block overhead, signature-based

stream authentication techniques either rely on

amortizing a single signature over multiple

blocks or designing extremely fast signature

schemes like k-time signatures [22], BiBa [23],

HORS [24] and TV-OTS [25] to sign each

block. Designing extremely fast signature

schemes often come at the cost of unreasonably

high storage and communication overheads

[20], [25], [21] that tend to increase linearly

with the size of the message that is signed. For

instance, the HORS scheme (considered more

efficient than BiBa) generates signatures

between 2,560 bits and 3,200 bits with public

keys that are about 10 KiB with reasonable

sized parameters [24], [25]. Moreover, BiBa

and HORS require frequent redistribution of

new public keys (that are very large) to

maintain the security of the scheme, adding

significant overheads to the communication and

storage costs [25]. The TV-OTS scheme avoids

some problems of the BiBa and HORS

schemes, but still requires large public keys on

order of 10KiB, requires time synchronization

and does not provide long-term nonrepudiation

as the signatures can be forged by the receiver

after a reasonable effort [25].

 To amortize a signature over multiple blocks

in a stream, EMSS and AC use hash chains,

SAIDA splits the signature and hash value of

each block over multiple blocks, and WL uses

Merkle trees. EMSS, AC, and SAIDA are

probabilistic authentication schemes, i.e., the

ability of a receiver to verify a received block

depends on whether the receiver has some

additional blocks of the stream in its possession

(which inherently requires a verifier to

maintain a buffer with multiple data blocks)—

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 222

thus, the probability that a receiver is able to

verify a block depends on the nature (bursty,

independent, etc.) and probability of data loss

during stream transmission. EMSS and AC rely

on redundant placement of multiple hashes in

each block to deal with blocks that are lost

during transmission. SAIDA relies on erasure

codes to recover from losses. In probabilistic

authentication schemes, maintaining a

reasonable probability of verification in the

presence of high data loss leads to higher per-

block communication overhead and increased

size of verifier-side data buffer. If per-block

communication overhead is restricted,

verification probability drops as data loss

increases.

The WL scheme is the only known

deterministic stream authentication protocol. In

the WL scheme, a stream is divided into

segments, with each segment containing

multiple blocks (in WL each block is a single

packet). The computational overhead at the

signer and verifier, the signer’s buffer size, and

the per-block communication overhead are

highly dependent on the segment size. When

segment sizes are small, computational

overhead at the signer and verifier increases.

On the other hand, large segment sizes causes

the signer’s buffer size and the perblock

communication overhead to increase. With a

reasonable block size (say, 16 [21]), the signer-

side delay increases (affecting real-time

performance) along with the per-block

communication overhead (to a magnitude of

100’s of bytes). Recently, Lysyanskaya et al.

[26] proposed a stream authentication

technique, AECC using error correcting codes

that is provably secure in a formal adversarial

network model that limits the capabilities of an

adversary to inject and delete packets by

discrete quantities. The AECC scheme only

requires one signature operation for the entire

stream and adds only a constant size

authentication overhead per packet, however,

requires the sender to possess the entire stream

before signing. This limits the application of

the AECC scheme to delay-sensitive content

and cannot be applied to real-time generated

content.

III. PROPOSED SYSTEM

Fig. 1: PROPOSED SYSTEM

Fig 1 shows system architecture of content

distribution network. The components include

the core data center, web cache and it serving

the multiple clients and the back end of the

content distribution network is internet or wan

and the data centers. The caches should be

distributed widely and serving the requested

clients. Both the core data centers and web

caches contains media server and the content

distribution manager.

The media content should be stored in the

media servers and it should serve the content in

both the real time as well as on demand users.

Clients can include laptops, tablets and mobile

phones. A content distribution manager has the

following functionalities

 Tracking or auditing or monitoring the

content usage by the clients and accounting the

usage of their respective clients.

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 223

 The contents requested by the clients should

be fetched from the media server and partition

the file into multiple blocks and transmitting

the requesting blocks into appropriate clients.

 If the client requested the digital media

content the request should be sent to closest

web cache of the client. If the web cache

contains the request which will be ask by the

client it should be fetched and transmits to the

client.

  If the request is not in the web cache means

the request should be forwarded to the core

data center and fetches the data and should

transmit to the appropriate client.

 A. CONTENT UPLOADING: Server should

upload the multimedia content was given by the

content provider and store in a media Server.

The client can also be allowed to upload the

multimedia content after the registration

process is done.

B. STREAM AUTHENTICATION: Stream

authentication can help prevent some type of

attacks by providing the ability to sign and

verify each block in the stream. All content

originates at the core data center and the stream

signing mechanism is implemented at the core

CDM as part of its content processing service.

We assume the existence of a Public Key

Infrastructure (PKI) responsible for generating

certificates for the core CDM, and distributing

the public key and certificate of the core CDM

to all verifying entities. When a request arrives

at the core CDM, the content processing

service retrieves the content from the media

server. The core CDM then splits the content it

into a stream of blocks, signs each block (using

a suitable signature amortization technique),

places the authentication information within the

block, and transmits the signed stream of

blocks to the requesting entity. If the content is

not generated in real time, the content

processing service stores the signed stream at

the media server to prevent redundant signing

operations when subsequent requests arrive for

the same content.

C. STREAM VERIFICATION: Threats

involved in distribution of content include:

Compromising attacks, where an adversary

takes control of legitimate content providing

hosts (edge cache/core data center/third-party

provider) to inject malicious content, and Man-

in-the-middle attacks, where an adversary

performs modification of content during

transmission from core data center to the edge

cache or from the edge cache to the client or

from the core data center to the client.

Verification of signed streams at edge caches

ensures that packets failing verification are not

forwarded to the requesting client, thereby

preventing unnecessary usage of bandwidth and

processing time at the client machine. When a

signed stream arrives at the client machine, the

requesting application verifies each block in the

stream and removes the authenticating

information placed inside the block before

beginning playback of the media content.

To allow users to be timely and accurately

informed about their data usage, our distributed

logging mechanism is complemented by an

innovative auditing mechanism. We support

two complementary auditing modes: 1. Push

mode, 2. Pull mode.

 1. PUSH MODE: In this mode, the logs are

periodically pushed to the data owner (or

auditor) by the harmonizer. The push action

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 224

will be triggered by either type of the following

two events: one is that the time elapses for a

certain period according to the temporal timer

inserted as part of the JAR file, the other is that

the JAR file exceeds the size stipulated by the

content owner at the time of creation. After the

logs are sent to the data owner, the log files will

be dumped, so as to free the space for future

access logs. This mode serves two essential

functions in the logging architecture: a. It

ensures that the size of the log files does not

explode b. It enables timely detection and

correction of any loss or damage to the log

files.

2. PULL MODE: This mode allows auditors to

retrieve the logs anytime when they want to

check the recent access to their own data. The

pull message consists simply of an FTP pull

command, which can be issues from the

command line. For naive users, a wizard

comprising a batch file can be easily built. The

request will be sent to the harmonizer, and the

user will be informed of the data’s locations

and obtain an integrated copy of the authentic

and sealed log file.

IV. CONCLUSION

The authentication flow in the content

distribution network prevents malicious

modification or threats in the middle of the data

transmission. The challenging task is to

verification and signing for the on demand

content and the toleranceagainst the

transmission loss and the communication

overhead should be small per block. We

present the authentication of online digitized

signature using trap door hash function method

that challenges that meet real time streaming in

content distribution and provide efficient

authentication of delay sensitive streams. Our

the authentication of online digitized signature

method by authenticating from initial blocks in

the stream using signature on the trap door hash

function and by authenticating subsequent

blocks in the stream.

V. REFERENCES

[1] B.M. Luettmann and A.C. Bender, “Man-

in-the-Middle Attacks on Auto-Updating

Software,” Bell Labs Technical J., vol. 12, no.

3, pp. 131-138, 2007.

[2] Akamai, “Akamai Information Security

Management System Overview: Securing the

Cloud,” White Paper, http://stag-

wwwweb01.akamai.com/dl/whitepapers/Akam

ai_ ISMS.pdf?campaig n_id=AANA-65TPAC,

2012.

[3] P. Bright, “Google, Microsoft Distribute

Malware After Domain Name Trickery,” Ars

Technica, http://arstechnica. com/security/

news/2010/12/google-microsoft-distribute-

malware-after-domain-name-trickery.ars, 2010.

[4] A. Gonsalves, “YouTube Confirms Justin

Bieber Hack Attack,” InformationWeek,

http://www.informationweek.com/news/

security/attacks/showArticle.jhtml?articleID=

225702490, 2010.

 [5] K. Skaugen, “Cloud 2015,” Proc. Interop,

http://www.interop.-

com/lasvegas/2011/presentations/free/136-kirk-

skaugen.pdf, 2012.

[6] Cisco, “Cisco Visual Networking Index:

Global Mobile Data Traffic Forecast Update,

2011-2016,” White Paper,

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 225

http://www.cisco.com/en/US/solutions/collater

al/ns341/ns525/ns537/

ns705/ns827/white_paper_c11-520862.pdf,

2012.

 [7] D. Grabham, “Intel: New Server Needed

for Every 120 Tablets Sold,” Techradar,

http://www.techradar.com/news/computingcom

ponents/processors/intel-new-server-needed-

for-every-120- tablets-sold-1069021, 2012.

[8] A. Shamir and Y. Tauman, “Improved

Online/Offline Signature Schemes,” CRYPTO

’01: Proc. 21st Ann. Int’l Cryptology Conf., pp.

355-367, 2001.

[9] G. Brassard, D. Chaum, and C. Cre´peau,

“Minimum Disclosure Proofs of Knowledge,”
J. Computer and System Sciences, vol. 37, no.

2, pp. 156-189, 1988.

[10] H. Krawczyk and T. Rabin, “Chameleon

Signatures,” Proc. Network and Distributed

System Security Symp. (NDSS), 2000.

 [11] S. Even, O. Goldreich, and S. Micali,

“Online/Offline Digital Schemes,” CRYPTO:

Proc. Ninth Ann. Int’l Cryptology Conf., pp.

263-275, 1989.

 [12] G. Ateniese and B. de Medeiros,

“Identity-Based Chameleon Hash and

Applications,” Proc. Eighth Int’l Conf,

Financial Cryptography (FC), pp. 164-180,

2004.

