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Abstract—Transfer learning model is incorporated wherein the last few layers of Alex net 

architecture are modified to extract the features and then used to predict the class of a new data 

set. To attain a custom task, TL basically reduces the required data and training time as 

ImageNet model was trained on millions of images to validate the result. With the proposed TL 

method an accuracy of 96.25% with sgdm and 97.91% with adam optimizers are obtained for 

Classification of Tumor images. As the study of this TL model is an important tool and result of 

this is used for biomedical image processing applications. The classification of brain MRI 

images and the detection of tumors in the brain are implemented with the TL method as it is 

simple and beneficial when compared to CNNs. This proposed model is much faster and easier, 

because this Transfer learning model can be used the learned features to new classification task 

using 100s of images and 10s of classes. 

Keywords—Transfer learning model, modified architecture of alexnet, image classification, 

MRI brain tumor classification, Convolutional neural network. 

I.INTRODUCTION 

In recent years several studies have been 

conducted and become a vital job to detect 

the tumors in the brain via MR images [1] 

[2] [3]. Human life is threatened by Brain 

tumors and the chance of patient’s survival 

[4] increases if it is being detected at an 

early stage. A brain tumor arises when the 

brain develops a form of abnormal cells 

from inside. The main two forms of 

tumorsare: benign tumors and malignant or 

canceroustumors. Depending on the part of 

the brain involved and symptoms they 

produce the types of brain tumors may 

differ. These consist of symptoms like 

headaches, seizures, vision problems,  

 

vomiting and mental changes.In the volume 

histological typing of tumors, The World 

Health Organization (WHO) grading system 

[2] as controlled by the Central Nervous 

System, whose first edition dates back to 

1979, the second to 1993 and last one to 

2007. According to WHO grade, the four 

kinds of tumors are: Grade I tumors are 

benign, slow-growing, and has long-term 

survival. Grade II tumors are comparatively 

slow-growing but at times recur as higher 

grade tumors. They are either benign or 

malignant. Grade III tumors are malignant 

and frequently recur as higher grade tumors. 
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Grade IV tumors are violent malignant 

tumors and grow rapidly.Transfer Learning 

(TL) [5][6] is an extension of CNNs[7][8]. 

Basically to train resources from huge 

amounts of data Convolutional networks 

(CNNs) are used but require more time and 

sufficient amount of pre-trained data 

(normally ImageNet). The TL model 

replaces the CNNs by considering the pre-

trained CNN model by just removing the 

last fully-connected layer with the fully-

connected custom layer to perform the 

desired task. For new dataset, the original 

CNN is treated as a feature extractor and the 

classifier is trained after replacing the last 

fully-connected layer. The training period is 

short because it does not require any 

iteration. The input weights and connections 

are both randomly generated as TL method 

is more efficient. 

II.METHODOLOGY 

Alexnet is one of the revolutionary 

pretrained convolutional neural network and 

trained on more than one millions of images 

from the database of ImageNet [1] [7] [9]. 

The total layers in the alexnet model is 25. 

Figure 3 represents an interactive 

visualization of alexnet architecture layers. 

There are mainly 5 layers in each of this 

pretrained model convolutional layers, batch 

normalization, and nonlinear activation 

function ReLU. There are three layers of 

max pooling and fully connected layers 

(dense layer) with two layers of dropout 

layers, one layer of input softmax and output 

layer. This model has a depth of eight layers 

(5-convolutional layers and 3- fully 

connected layers). It has the capability of 

classifying 1000 classes because the output 

layer is having 1000 object categories. Some 

of the object categories of alexnet are 

animals, flowers, pencil, mouse, tea cup, 

jug, keyboard etc. As a result, the rich 

features are learned by alexnet model to 

classify the classes for a wide range of 

images. 

 
Input image size of this model is 227*227*3 

and alexnet is also used directly to classify a 

new image. The model is trained to 61 

million parameters and has 0.72 billion 

operations per prediction. Memory size of 

the alexnet is 245MB.In the ILSVRC 

imagenet competition, alexnet stood an 

outperformer with accuracy of 83.6 

percentage and reduce the error rate from 26 

percentage to 16.4 percentage.The layers of 

transfer learning model are connected to 

each other and shown in three dimensional 

view as shown in figure 2. First and third 

convolutional filters are of size 11*11 and 

5*5 and remaining all convolutional filters 

are of size 3*3. The number of 

convolutional filters from first to last are 96, 
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96, 256, 256, 384, 384, 256, and 256 and 

next three layers are dense layers. To retain 

a pertained alexnet model to predict new 

images of dataset, a few layers of this model 

have to be replaced with new layers and 

adjust according to the new images of 

dataset. The number of classes must be 

changed to match new images of dataset. 

The twenty third layer of the 

pretainedalexnet, fully connected layer (fc8) 

should be replaced with new fully connected 

layer (newfc8) using parameters like output 

size to the number of classes in the new 

images of dataset (the number of classes in 

this paper is 2, benign and malignant) and 

learning rates are modified to speed up the 

training process for new dataset 

 

 

 

 
The learning rate parameters are weight 

learn rate factor and bias learn rate factor, 

both are set to 20. An original classification 

layer (output) should be replaced with new 

classification layer (newoutput). This new 

classification layer is also set to the number 

of classes i.e. 2. All these modifications can 

be seen in figure 4 and by now transfer 

learning model is ready. In the next section, 

the preprocessing of training dataset, 

validation dataset, and testing dataset are 

discussed. The model is trained using 

training dataset and then classified the 

images for testing dataset. 

III.EXPERIMENTAL RESULTS  

Normally, selecting a data base is very 

difficult task for image denoising, 

segmentation [10], and classification. In this 

paper, a popular database for brain tumor 

images BraTS 2015 and 2017 database are 

considered to prepare various datasets like 

training, validation, and Testing datasets. 
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With 660 images including both benign and 

malignant tumor images, a new database is 

prepared and named as Brain Tumor 

Database-660 (BTD-660). In this BTD-660 

database, 400 images of training dataset 

including 200 images of benign tumor 

images and testing dataset of 120 benign and 

120 malignant tumor images. Validation 

dataset includes benign tumor images of 10 

and malignant tumor images of 10. Using 

data augmentation all the images in the 

datasets are augmented to appropriate input 

layer.The transfer learning model is then 

trained to these datasets of training and 

validation datasets with training options like 

optimizer sets to either stochastic gradient 

descent with momentum (sgdm) or adaptive 

moment estimation (adam), minibatchsize 

20, maxepochs 30, initial learing rate 

0.0001, and validation frequency 20. The 

model is trained with training accuracy of 

100 percentage and reached validation 

accuracy to 100 percentage. Remaining all 

the information related to training process is 

shown in figure 5. 

 

 

 
Once training process is reached to the 

maximum epoch, it shows that the training 

process has completed. Now it’s time to 

evaluate the trained model with testing 

dataset. From Fig. 7 and Fig. 8, the proposed 

model is a predicted class of individual 

image in the testing dataset with predicted 

probability 
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The proposed transfer learning model is 

misclassified as 9 images out of 240 images, 

when sgdm is used as optimizer and five 

images are misclassified by the model, when 

adam is used as optimizer. From these 

confusion matrices, the performance 

matrices of the proposed model is evaluated. 

The model has following performance 

metrics: With sgdm optimizer accuracy is 

96.25%, error rate is 3.75 and with adam 

optimizer accuracy is 97.91%, error rate is 

2.08. 

IV.CONCLUSIONS 

In this paper, the proposed Transfer learning 

model is considered for classification of 

MRI brain tumor images because it is much 

faster and easier. With sdgm optimizer, the 

accuracy is 96.25%, error rate is 3.75 and 

with adam optimizer, the accuracy is 

97.91%, error rate is 2.08. From these 

results, the model with adam optimizer has 

better performance than that the model with 

other optimizer. The two optimizers 

considered in the proposed model for 

classification purpose performs better 

compared to alexNet model. Hence the 

proposed model can be used for biomedical 

image processing applications. 
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