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ABSTRACT— This paper  gives  a  community  for  indoor  and  out- door air pleasant tracking. Each 

node is hooked up in a specific room  and  consists of  tin  dioxide  sensor  arrays  related  to  an 

acquisition and manage device. The nodes are hardwired or twine-lessly linked to a significant tracking 

unit. To boom the fuel concentration dimension accuracy and to prevent false alarms,  gas sensor have 

an impact on portions, i.E., temperature and humidity, also are measured. Advanced processing based 

on more than one-enter– single-output  neural  networks  is  applied  at  the  community sensing nodes 

to achieve temperature and humidity compensated gasoline  attention  values.  Anomalous  operation  

of the  network sensing nodes and strength intake are also discussed. 

Key Terms—Air  quality  (AirQ), embedded  Web  server, neural network, wireless networks. 

I.INTRODUCTION 

AIR supplies us with oxygen that is essential 

for our bodies to live. Air is 99.9% nitrogen, 

oxygen, water vapor, andinert  gases.  Human  

activities  can  release  substances  into  the air, 

some of which can cause problems for humans, 

plants, and animals. Air quality can be 

expressed by the concentration of several 

pollutants  such  as  carbon  monoxide  (CO),  

sulphur  dioxide, nitrogen dioxide, and ozone. 

The threshold values specified by the European 

Environment Agency [1] for these pollutants 

are 10, 350, 40, and 120 μg/m3, respectively.  

Pollution  also  needs  to  be  considered  inside  

our  homes, offices, and schools. Some of these 

pollutants can be created by indoor activities 

such as smoking and cooking. Generally, in 

industrialized countries, the population spends 

about 80%–90% of  time  inside  buildings  and  

is  therefore  exposed  to  harmful indoor  

pollutants.  Indoor  air  quality  is  generally  

assessed  by separately measuring CO, 

temperature, and humidity [2]. This 

information,  even  if  fused,  is  insufficient  to  

allow  a  good characterization of indoor air 

quality. The  development  of  wireless  local  

area  network  (WLAN; IEEE802.11X) 

technology and the marketing of low-cost 

access  points  (APs;  e.g.,  Linksys  WAP11),  

wireless  network adapters (CardBus; e.g., D-

Link DWL-G650+), and wireless bridges (e.g., 

DWL-810+) creates the possibility of 

implementing indoor/outdoor air quality 

monitoring networks characterized by high 

flexibility, modularity, and low cost. Tin oxide 

sensors (e.g., Figaro, Nemoto [3]) are 

inexpensive and  fair  selective  gas  sensors.  

To  overcome  some  of  their limitations such 

as cross sensitivities [4], [5] and a temperature 

and humidity dependence behavior [6], 

appropriate sensor data processing is required. 

The aim of this work is to present a Wi-Fi 

indoor—outdoor air quality monitoring 

network that combines the capabilities of  tin  
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oxide  sensors  with  advanced  sensor  data  

processing based on multilayer perceptron 

neural networks for an accurate measurement 

of air quality and for the detection of air 

pollution events and of sensors’ abnormal 

operation. 

II. DIRECT AND INVERSE MODELING 

OF THE SENSORS’ CHARACTERISTICS 

The sensors’ nonlinearity requires the 

utilization of direct and inverse modeling for 

sensor calibration and on-line measurement 

phase [7]. For the particular case of tin oxide 

gas sensors TGS800, TGS822, TGS842, and 

TGS203, the sensors’ response is strongly 

dependent on parameters such as temperature, 

humidity, and cross influence of the other 

gases. For practical and economic reasons, the 

number of calibration points is very low, and 

thus, a neural network (multilayer perceptron 

architecture), which is a global approximator of 

multivariable characteristics [8], was used in 

this paper. Polynomial modeling is another 

solution for multivariable characteristics 

modeling.  Representative of this type of 

solution is the polynomial model that is a part 

of the IEEE1451.2 standard for smart sensors 

particularly related to smart sensors correction 

engine implementation[9]. The method 

represents an interesting solution. 

However, it requires a large set of data (i.e., a 

higher number of calibration points compared 

with a neuronal network model) for polynomial 

model coefficients calculation [10], i.e., 

 

where Xn are the input variables to the sensor 

characteristic block, Hn are the offsets to the 

input variables, and the D(k) represents the 

degree of the input Xk, i.e., the highest power to 

which [Xk − Hk] is raised in any term of the 

multinomial. The Ci,j,...,p represent the 

calculated correction coefficients for each term 

values that are obtained, considering the 

segmentation of the input variable range. The 

accuracy of the method is influenced by the 

polynomial degree, the number of segments, 

and the number of values included in defined 

subranges that make the multivariable 

polynomial inverse modeling for external 

factors compensation computationally 

expensive. Considering only one segment for a 

given gas concentration, where the voltage 

acquired from gas sensor channel represents the 

primary variable (X1 = VGi ), and restricting 

the number of influence factors on gas 

concentration measurement to temperature and 

humidity expressed by voltage values acquired 

from temperature and relative humidity sensor 

channels (X2 =VT,X3 = VRH), the compensated 

values of gas concentration CGi are expressed 

by 

CGi =C000+C100CGi+C010VT 

+C001VRH+C101VGiVRH 

+C110VGiVT +C011VT VRH+C111VGiVT 

VRH. (2) 

As can be observed, to reduce the complexity 

the first-degree polynomial approximation is 

considered. Better accuracy can be obtained 

with a higher degree multivariable polynomial 

model, which implies an increase of the 

computational load. A comparison between the 

“classical” polynomial modeling and neural 

network modeling shows that the number of 

calibration points used to calculate the 

polynomial coefficients for an imposed 
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accuracy of inverse characteristic modeling is 

generally greater than the number of calibration 

points used to design the neuronal network 

sensor models [11]. Moving the complex 

processing from the embedded server to the 

Web browser side permits us to overcome some 

of the drawbacks of neural network processing 

such as the high number of multiplication and 

the use of nonlinear transfer functions (e.g., 

tanh(・)).  

 

III. SENSORS’ NETWORK 

Gas sensor networks provide a promising 

mechanism for mining information from the 

monitored areas. The following two types of 

Wi-Fi (WLAN) architectures were considered: 

1) an ad hoc architecture and 2) an AP 

infrastructure network, which assures 

additional services (e.g., data publishing on the 

wired Internet), taking into account that the AP 

works like a bridge between the wired and 

wireless network [12]. The ad hoc architecture 

seems to be a good solution, particularly for air 

quality monitoring in outdoor conditions since 

it requires less elements and, thus, less power 

consumption. 

The ad hoc smart sensor network (Fig. 1, case 

1) includes the following three elements: 1) a 

PC with an IEEE802.11gcompatible Wi-Fi 

cardbus adapter (DWL-G650+) as the main 

control and processing unit; 2) a set of sensing 

nodes (SNj) with air quality sensors (GS1, 

GS2, . . . , GSi); and 3) a data acquisition, 

primary processing, and transmission control 

protocol/Internet protocol (TCP/IP) 

communication unit (APC) based on IPμ8930 

general-purpose network controller whose 

Ethernet port is connected to a DWL-G810 

wireless bridge.  

Referring to the AP infrastructure (case 2), the 

wireless network node components are the 

same as that of case 1, with the only difference 

being the inclusion of an AP (LinksysWAP11), 

which is an element that extends the wireless 

subnetwork 

 

 
 

Fig. 1. Ad hoc air quality smart sensor network 

architecture associated with different rooms 

(R1, R2, . . ., Rj), where SNj are sensing nodes, 

GSj i are gas sensors, TSj are temperature 

sensors, RHSj are relative humidity sensors, 

and WBj are wireless bridges. 

 

 
 

Fig. 2. Infrastructure WLAN air quality smart 

sensor network architecture that includes 

sensing nodes distributed in different rooms. 

R1, . . ., Rj: Rooms with wireless sensing 
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nodes. Rw1 and Rw2: Rooms with wired 

sensing nodes. SNj : Sensing nodes. GSj i: Gas 

sensors. TSj : Temperature sensors. RHSj : 

Relative humidity sensors. WBj : Wireless 

bridges. AP: Access point. 

range capabilities and enables wireless network 

traffic to be transmitted over the wired network 

that can include additional wired sensing nodes 

(SNj) distributed in different rooms (Rwj 

rooms; Fig. 2). As can be observed in Fig. 2, 

the wireless or wired sensing nodes are 

installed in different rooms (R1, R2, . . . ,Rj, 

Rw1, Rw2, . . . ,Rwj), where different values of  

temperature, relative humidity, and air quality 

are measured. Fig. 3 underlines the differences 

between the measured air quality parameters in 

the 

 

 
 

Fig. 3. Time evolution of indoor air quality 

parameters in two different rooms. (a) Smoking 

room. (b) Non-smoking room. 

 

following two different situations: 1) smoking 

room and 2) nonsmoking room. 

 

A. Sensing Nodes 

The sensing nodes are designed and 

implemented to perform the air quality (AirQ) 

monitoring using low-cost gas sensors and, at 

the same time, to get the additional information 

about the temperature T and relative humidity 

RH. This information is used to increase gas 

concentration measurement accuracy 

performing the error compensation caused by 

temperature and humidity influence. 

The used gas sensors are sintered using SnO2 

semiconductor heated sensors provided by 

Figaro [13] that assure pollution event 

detection (TGS800-general air contaminant 

sensor-AC), methane detection (TGS842-M), 

alcohol and organic solvent detection 

(TGS822-SV), and CO detection (TGS203-

CO). Information about temperature and 

relative humidity are obtained using Smartec 

SMT160-30 [14] and Humirel HM1500 [15] 

temperature and relative humidity transducers, 

respectively. 

The sensor experimental direct characteristics 

are expressed by voltages obtained at the gas 

sensor conditioning circuit output for different 

concentrations of gas, expressed in parts per 

million. The used conditioning circuit for the 

air pollution sensor TGS800, solvent vapors 

(TGS822), and methane sensor (TGS842) are 

presented in Fig. 4. 

 

To perform the sensor characterization, each of 

the considered gas sensors (GSi) is separately 

introduced in a test chamber as part of a 

laboratory-developed gas sensor calibration 

system. The values of gas concentration are 

imposed using a mass flow controller (MC 

Alicat Scientific) connected to gas bottles with 

standard concentration (e.g., 100 ppm CO). 

Temperature and humidity are measured using 

the temperature and relative humidity sensors 

that are also included in the chamber. Different 

values of temperature and relative humidity 
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Fig. 4. Gas sensor conditioning circuit. Vc: 

Circuit voltage. VH: Heater voltage. VGS: Gas 

sensor output voltage. RL: Load resistance. 

are imposed employing a set of drying and 

saturation chambers connected to the testing 

chamber and air pumps (Fig. 5). To decrease 

humidity, the drying  chamber with two Peltier 

cells is connected to the test chamber.  

After condensation on the Peltier cells surface, 

the condensed liquid in the drying chamber is 

collected and pumped off from the drying 

chamber. Low values of relative humidity can 

be obtained in this way (e.g., RH = 20%). 

Higher humidity values are obtained when the 

saturation chamber is connected to the testing 

chamber. In this case, condensed/distilled water 

is pumped from the water tank and vaporized 

into the air circulation system. Values of 95% 

were reached using this procedure. Using the 

RH variation procedure, gas sensors 

characteristics for RH1 = 35%, RH2 =65% and 

RH3 = 95% were obtained. 

For temperature, a Peltier cell is employed. 

Additionally, a testing chamber ventilator is 

used to inject the cold or warm the air in the 

testing chamber. For the considered case, 

several 

  
 

Fig. 5. Gas sensor calibration system 

architecture. CGB: Calibration gas bottle. 

MFC: Mass flow control. TCE: Testing 

chamber electrovalve. DCE: Drying chamber 

electrovalve. SC: Saturation chamber 

electrovalve. DCP: Drying chamber pump. 

SCP: Saturation chamber pump. DC: Drying 

chamber. SC: Saturation chamber. HC: Heater 

control. H: Heater. WT: Water tank. TCV: 

Testing chamber ventilator. SCV: Saturation 

chamber ventilator. 

values of temperature were imposed, T1 = 10 

◦C, T2 = 15 ◦C; T3 = 20 ◦C, T4 = 25 ◦C and T5 

= 30 ◦C. 

A gas exhaust circuit is used to clean the testing 

chamber after a particular gas sensor testing 

(e.g., TGS842 Methane gas sensor testing). 

B. APC 

The voltages obtained from sensors’ channels 

are applied to the analog inputs of the APC, 

which is a general-purpose network controller 

and Web server (Ipsil IPμ8930). It performs 

sensing channels data conversion (voltage to 

gas concentration in parts per million, voltage 

to temperature in degrees Celsius, and voltage 

to relative humidity in percent) and Web 

data publishing (case 1) or transmits the data 

using TCP/IP communication to the main 

processing and control unit (laptop PC) that 

performs the data logging, data processing, and 
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Webpublishing through a LabVIEW Web 

server (case 2). 

 

IV. DATA PROCESSING 

Two types of sensor data processing 

architectures that allow the calculation of 

several air quality values are implemented 

using JavaScript and LabVIEW Web publisher 

technologies. 

The first one is a neural network algorithm 

implemented in JavaScript in the embedded 

server (Web sensor) and represents one of the 

main novelties of the work. The second 

software architecture is implemented in the 

network PC and performs the following three 

tasks: 1) sensing nodes data reading through 

TCP/IP remote control; 2) air pollution events 

detection and gas concentration estimation 

based on neural network inverse models of gas 

sensors; and 3) data logging and Web 

publishing of air quality data. The LabVIEW 

capabilities were used for the implementation 

of this architecture. JavaScript is associated to 

the smart sensor network and assures 

independent dynamic webpages generation. 

The sensor nodes (SNj), which are supported 

by embedded Web server architectures, acquire 

and process the voltages from sensors’ 
channels using a set of implemented JavaScript 

functions (JSi) that are part of hypertext 

markup language (HTML) files stored in an 

embedded Web server (Ipsil IPμ8930) 

electrically erasable programmable read-only 

memory (EEPROM). JSi complexity depends 

on the associated sensor. Data processing is 

performed mainly at the Web browser level, 

which reduces the computational load 

associated with embedded Web servers and is 

also important as regard power consumption 

and Web server autonomy. 

Referring to the JST and JSRH, which are 

JavaScript functions associated with 

temperature and relative humidity calculation, 

the following relations are implemented: 

 
where α1 = 212.765 ◦C, β1 = 0.320, α2 = 

210.970 % RH, β2 = 0.235, VS = +5 V, VT is 

the temperature channel’s voltage, and VRH is 

the relative humidity channel’s voltage. In the 

GSi case, a set of JSNPBi (JavaScript neural 

processing block for i measurement channel: 

NPBi) functions are used. 

The utilization of NPBs is related with the 

inverse modeling [16] of gas sensor 

multivariable nonlinear characteristics, which 

are strongly dependent on temperature and 

humidity but are also influenced by the 

concentration of other gases as part of the 

analyzed gas mixture. Based on the designed 

NPBi, a 

digital readout of the gas concentration with 

temperature and compensation [17] is obtained. 

A. NPBi Architecture and Design 

The used neural processing blocks (NPBi) are 

two inputs-one output multilayer perceptron 

neural networks (Fig. 6). 

 

 
 

Fig. 6. The NPBi architecture. N, N−1: 

Normalization and denormalization blocks.RHj 

: Humidity selector. CGi : Temperature and 
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humidity compensated values of the gas 

concentration Gi. TP : Temperature input 

value. VGSi : Input voltage value on the GSi 

channel. 

The NPBi’s internal parameters (weights and 

biases) are calculated offline using MATLAB. 

The neural network training data were obtained 

in the system calibration phase. They are 

voltage values (VGSi ) acquired from the gas 

concentration measurement channel for 

different values of gas concentration CGi and 

different temperature (Tp) and relative 

humidity (RHi) conditions. 

The developed MATLAB neural network 

design program calculates different sets of 

weights and biases for each RHi experimental 

value (e.g., RH = {45%, 55%, 65%}. In the air 

quality parameters measuring phase, the 

calculated weights are used by JavaScript- or 

LabVIEW-implemented functions for online 

processing of the acquired voltages. 

The NPBi inputs are the normalized voltages 

associated with gas sensors’ channels and a 

normalized temperature, while the NPBi’s 

output is the temperature-compensated gas 

concentration CGi. The NPBi normalized 

inputs are defined by 

 
where V 1S represents the gas sensor 

normalization factor (GSi voltage supply = +10 

V in this paper). 

Because GSi characteristics depend on 

humidity [13], an accurate measurement of the 

gas concentration is provided using different 

NPBi|RHs whose weights and biases are 

calculated using data obtained for different 

relative humidity conditions (i.e., RH = 45%, 

55%, and 65%) and the interpolation method 

presented in [18]. 

The number of NPBi’s layers is three. The 

hidden layers have two to five tansignoid 

(tansig(x)) neurons, and the output layer has 

one linear (l(x)) neuron. The implemented 

tansig(x) calculate its output according to  

 
which leads to a reduction in the computational 

load. 

Two criteria for NPBi design were considered, 

namely, the type and the number of neurons on 

the hidden layer, both determining the 

capabilities of the NPBi to adapt to a given  

 

 
Fig. 7. Modeling error versus concentration for 

different NPBCO architectures (T = 10 ◦C). 

characteristic. Different neuron nonlinear 

activation functions require different memory 

space and processing capabilities from the 

hardware platform. In this paper (tansignoid 

activation function), the neural processing task 

is distributed between the sensing node, which 

includes an embedded Web server, and the 

Web client (laptop PC), thus reducing the 

requirements of complex processing at the 

IPμ8930 level. At the same time, and 

considering the IPμ8930 memory space, an 



 
 

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 111 

 

optimization of HTML number of pages and 

the page size was carried out. 

To diminish the vector sizes of weights and 

biases, a study concerning the number of 

neurons for a required NPBi performance, 

which is expressed by a modeling error, was 

also carried out. More neurons imply complex 

processing but, first, imply large dimensions of 

the weights and biases matrices, which mean 

large memory requirements. Thus, the objective 

was to reduce the number of hidden neurons, 

taking into account the limited memory 

resources (512 kB EEPROM) of the IPμ8930 

and the browser’s online sensor data processing 

capabilities. 

For the particular case of the CO measuring 

channel, the training set includes, as target, 15 

CO concentration values uniformly distributed 

in the 30–300 ppm interval. The input values 

are the voltage values acquired from the 

TGS203 CO concentration measuring channel 

corresponding to the aforementioned 

concentrations. The measured temperature in 

the testing chamber was Tp [in degrees Celsius] 

= 10 × p, p = {1, 2, 3, 4, 5}, and the relative 

humidity was RH = 35%. The Levenberg–
Marquardt algorithm [19] was used to calculate 

the weights and biases (i.e., WNPBi and BNPBi 

) of the neural network. Imposing a sum square 

error stop condition SSE = 0.01, and for neural 

networks characterized by four, five, or and 

hidden neurons, different measuring channel 

modeling error characteristics (eCGsi) were 

obtained (Fig. 7). The modeling error is defined 

by 

 
where FS represents the measurement range, 

CCGsi is the experimental used gas 

concentration (e.g., CO concentration) 

expressed in parts per million, and CNPB CGsi 

is the concentration of gas calculated by the 

corresponding neural processing module. 

 

 
Fig. 8. Maximum inverse modeling error for 

different NPBCO architectures (nhidden = {4, 

5, 6}) and different temperatures Tp = 10p ◦C. 

Since the used gas sensors characteristic 

depends on temperature, a study related with 

the CO channel modeling error (eCO) versus 

temperature was carried out (Fig. 8). With 

humidity being an influence quantity, different 

values of the relative humidity lead to different 

primary gas selectivity characteristics and, 

hence, to different gas concentration 

measurement accuracies. Thus, experimental 

data obtained for three different values of 

relative humidity, i.e., RH1 = 35%, RH2 = 

65%, and RH3 = 95%, and five values of 

temperatures included in the IT = [10; 50]◦C 

were considered. The 

imposed gas concentrations for measurement 

system testing were ten values of methane 

concentration distributed in the ICM = [500; 

5000] ppm interval, 15 values of CO 

concentration ICCO = [30; 300] ppm, and 15 



 
 

Volume 08, Issue 04, April 2019 ISSN: 2456 - 5083 Page 112 

 

values of solvent vapors (ethanol vapors) 

concentration, i.e., CSV = [50; 5000] ppm. 

Based on the GSi voltages for the considered 

gases concentrations, and taking into account 

temperature and humidity, three sets of weights 

and biases (35%, 65%, and 95% relative 

humidity) were calculated for CO, methane, 

and solvent vapor measurement channel. 

 

VII. CONCLUSION 

This paper has reported the implementation of a 

measuring system for air quality monitoring. 

Two architectures are proposed for wireless 

communication between the sensing nodes and 

a personal computer that manages the whole 

system. Because of the communication range of 

the hardware used, the systems are particularly 

suited for indoor applications. The outdoor 

range limitation can be overcome using high-

gain omnidirectional antennas (e.g., D-Link 

ANT24-1500) that provide extended coverage 

for an existing 802.11b/g wireless network 

avoiding the cost and complexity of adding 

additional wireless APs or wireless repeaters. 

The coverage of the Wi-Fi designed network 

can be extended up to tens of kilometers by 

including in the system extended coverage Wi-

Fi repeaters (e.g., Duganit WL-2410). 

Considering the increasing number of the low-

cost or even free Wi-Fi Internet hotspots and 

the capabilities of the distributed air-quality-

developed system (based on air-

qualityembedded Web sensors), different 

locations can be monitored and the air quality 

values Web published as long as they have Wi-

Fi coverage. The output of the used gas sensors 

depends not only on the cross influence of the 

primary measured gas but also on external 

influence factors, namely temperature and 

humidity. Thus, several NPBs were 

implemented to obtain the temperature and 

humidity corrected values of the gases’ 
concentrations. The merits of this type of 

technique for the required purpose, i.e., the 

accurate inverse modeling of the gas measuring 

channel for a small number of calibration 

points, are well established. 

The main novelties of this paper are given as 

follows: 

1) the development of an air quality monitoring 

system that uses smart sensors in a wireless 

network; 2) the embedding of neural network 

processing blocks distributing the processing 

charge between the embedded systems (Web 

sensor) and the Web browser installed in a 

personal computer; and 3) the development of 

PC software for sensing node TCP/IP remote 

control, advanced data processing, data storage, 

and Web publishing software associated with 

air quality monitoring system. Special attention 

was granted to the optimal implementation of 

the neural network and to a practical evaluation 

of the distributed sensing system power 

consumption. 

The proposed air quality monitoring system 

based on a wireless smart sensor network and 

on neural network processing blocks embedded 

on the sensing nodes’ HTML pages presents 

the following advantages. 

• It provides extended capabilities for air 
quality monitoring for indoor and outdoor 

conditions. 

• It provides good accuracy of gas 
concentration measurements by using neural 

networks to compensate the temperature and 

humidity influences. 

• It presents a client-side JavaScript solution for 

neural network implementation. 
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• Based on TCP/IP read and write functions 
implemented in LabVIEW, it allows advanced 

processing of air quality data by a PC. 

Measurements of the system’s power 

requirements show that each node requires 

about 8 W. This clearly indicates that a 

system’s autonomy of days or months can only 

be reached if batteries’ recharge capability, 

using, for instance, solar panels, is provided. 

The output of a specific tin dioxide sensor 

arrays depends not only on temperature and 

humidity but also on the concentration of other 

gases and vapors. The effect of this cross 

influence on the accuracy of the measurement 

can be minimized using also neural 

networks.We will address this problem in a 

future work. 
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