

Vol 08 Issue03, Mar 2019 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2019IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 6th

Mar 2018. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-08&issue=ISSUE-03

Title: IDENTICAL SEARCH BY USING STRING SIMILARITY BY USING HASHING

Volume 08, Issue 03, Pages: 41–45.

Paper Authors

MR.A.JANARDHAN RAO, N.NAGARJUNA

Vignan’s Lara Institute of Technology & Science

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 08 Issue03, Mar 2019 ISSN 2456 – 5083 Page 41

IDENTICAL SEARCH BY USING STRING SIMILARITY BY USING

HASHING

MR.A.JANARDHAN RAO
1
, N.NAGARJUNA

2

Assistant Professor
1
,

Department of M.C.A , Vignan’s Lara Institute of Technology & Science

M.C.A Student
2
,Department of M.C.A,Vignan’s Lara Institute of Technology & Science

Abstract: String similarity search is a fundamental query that has been widely used for DNA

sequencing, error-tolerant query auto-completion, and data cleaning needed in database, data

warehouse and data mining. In this paper, we study string similarity search based on edit

distance that is supported by many database management systems such as Oracle and

PostgreSQL. Given the edit distance, ed(s, t), between two strings, s and t, the string similarity

search is to find every string t in a string database D which is similar to a query string s such that

ed(s, t) for a given threshold. In the literature, most existing work take a filter-and-verify

approach, where the filter step is introduced to reduce the high verification cost of two strings by

utilizing an index built offline for D. The two up-to-date approaches are prefix filtering and local

filtering. In this paper, we study string similarity search where strings can be either short or long.

Our approach can support long strings, which are not well supported by the existing approaches

due to the size of the index built and the time to build such index. We propose two new hash-

based labeling techniques, named OX label and XX label, for string similarity search. We assign

a hash-label, Hs, to a string s, and prune the dissimilar strings by comparing two hash-labels, Hs

and Ht, for two strings s and t in the filter step. The key idea behind is to take the dissimilar bit-

patterns between two hash-labels. We discuss our hash-based approaches, address their pruning

power, and give the algorithms. Our hash-based approaches achieve high efficiency, and keep its

index size and index construction time one order of magnitude smaller than the existing

approaches in our experiment at the same time.

ARCHITECTURE:

EXISTING SYSTEM:

Most of the existing string similarity search

algorithms take a filter-and-verify approach.

The filter step is introduced to reduce the

verification cost of two strings, s and t,

which is costly when two strings are long. In

order to find similar strings in a string

dataset D for a given query string s with a

threshold, they first prune strings, t, that

cannot be possibly similar with s such that

ed(s, t) > using an index built offline for D

in the filter step, and then verify those

Vol 08 Issue03, Mar 2019 ISSN 2456 – 5083 Page 42

strings that are possibly similar one by one

in the verification step. The performance of

an approach is measured by the query cost

and the index cost. The query cost is the sum

of the filter cost (the total running time in

the filter step) and the verification cost (the

total running time in the verification step).

The index cost is the index construction time

and the index space needed.To efficiently

process string similarity search, the existing

work attempts to prune strings in D as many

as possible based on the index built offline.

Almost all the existing work needs to know

the edit distance threshold beforehand, in

order to construct the index for a string

dataset D, except for BitTree. Behm et al.

propose a hierarchical structure containing

different filters, e.g., the length and charsum

filter, in Flamingo package. Gravano et al.

propose to partition a string into a set of q-

grams and prune a string pair (s, t) that have

less than a certain number of common q-

grams. The chunk-based approaches share

the similar idea but partition the string using

disjoint q-grams, called chun. Instead of

using fixed-length q-grams, Li et al.

selectively choose high-quality grams of

variable length in index construction.

PROPOSED SYSTEM:

In this paper, we study string similarity

search, when the query string s and the

average string t in D can be long. The up-to-

date approaches cannot efficiently process

long string similarity search for the

following main reasons. For the prefix

filtering approaches, the main idea is to use

a small number of q-grams for filtering.

When strings become long, the pruning

power of such a small number of q-grams

will reduce significantly. In addition, the

prefix filtering approaches need to know

before the index construction. However,

when the average strings become long, users

want to use different for string similar

search: a small for short strings and a large

for long strings. It cannot be easily handled

by the prefix filtering approaches. For the

local filtering approach, the BitTree index

will be extremely large to be stored and it is

time consuming to construct such an index.

Different from the existing work in the

literature, we propose new hash-based

labeling for string similar search. Let Hs and

Ht be two hash-labels for strings, s and t.

We show that s and t are definitely

dissimilar for a given using Hs and Ht. We

propose two hash-based approaches, namely

OX label and XX label. Both are in the

scheme of (~, ℵ,}, #). Here, ~ and ℵ are two

functions to create a hash-label Hs for a

string s, and} and # are two functions to

compare two hash-labels, Hs and Ht for two

strings, s and t. The key idea behind is to

take the dissimilar bit-patterns between two

hash-labels. We discuss our hash-based

approaches, address their pruning power,

and give the algorithms. New optimizations

to the verification algorithm are proposed

for efficiently verifying whether a candidate

string is an answer. We have conducted

extensive performance studies and confirm

the efficiency of our hash-based approaches

in both datasets of long strings and datasets

of short strings with much smaller index

size.

Vol 08 Issue03, Mar 2019 ISSN 2456 – 5083 Page 43

ALGORITHM:

String Similarity Search: Given a string

dataset D of n strings, aquery string s and an

edit distance threshold _, the string

similarity search problem is to find all

strings t ∈D such that ed(s, t) ≤ _. A well-

known algorithm to compute the edit

distance between two strings s and t is to fill

an edit distance matrix of size (|s| + 1) × (|t|

+ 1) using dynamic programming. However,

it requires O(|s| ・ |t|) time complexity

which is costly for long strings. The filter-

and-verify framework adopted by the

existing work builds an index to prune the

dissimilar strings of the query

string in the dataset D in the filter step, and

verifies the remaining candidates to get the

real result in the verification step. The filter

step is important to reduce the cost of

computing the edit distance between two

strings, by pruning the strings that cannot be

possibly in the final results as many as

possible using the index built offline. There

are some simple heuristics that can be

applied in the filter step. The length-filter is

such an example, which prunes the string t if

||s| − |t|| > _. The index built will further

prune strings thatcannot be simply pruned

by such simple heuristics.

|Qs ∩ Qt| ≥ max{|s|, |t|} + q − 1 − q_

MODULES:

1. UPLOAD PRODUCT

The registered users are

authorized to upload the product.

The product owners have ability

to change or even delete the

product from the application at

any point of time. The products

can be viewed to other users and

product owners can only access

the details.

2. STRING SIMILARITY

SEARCH

The uploaded products are listed

in the users’ view. There are lot

of products are listed and in order

to avoid congestion, the search

can be available to make utilize

the products in effective way.

The searches have more number

of details. In order to avoid the

congestions searches can be

utilized and give suggestion.

3. UPLOAD DOCUMET

ANALYSIS

According to user search it

shows the suggestion of product

can be shown to the user. The

products are shows to user

according to most searches and

have different types of search to

get the details and better retrieval

of product in order to implement

and make use of the search.

4. GRAPH ANALYSIS

Graph analysis of details can be

taken from the data which are

utilized in flow of project. The

graph can be utilized to showcase

the products maximum retrieval

by users search and how

effective to user while they are

searching in the system..

Vol 08 Issue03, Mar 2019 ISSN 2456 – 5083 Page 44

Conclusion:

In this paper, we study two new hash-based

approaches, OX label and XX label, for

string similarity search based on edit

distance, where OX = (~, ∨,⊕,#) and XX =

(~,⊕,⊕,#). Both OX and XX label use the

same last two functions, ⊕ and #, to

compare two hash-labels for pruning. But

they take a different way to create the hash-

labels. Here, OX label uses two functions, ~

and ∨, to create a hash-label for a string,

whereas XX label uses two functions, ~ and ⊕, to create a hash-label for a sting. We

prove that both OX and XX label can be

used to prune dissimilar strings, s and t,

when ed(s, t) > . The index size for OX label

and XX label is determined by L, and the

hash-label for string of any length has the

same L (the number of bits). We analyze the

pruning power by OX label and XX label.

We show that OX label is effective when L

is sufficiently large comparing to the sum of

the lengths of two strings, s and t. We also

show that the pruning power of XX label

only depends on the number of different q-

grams between the q-gram set Qs and the q-

gram set Qt for s and t, and can be

effectively used for both short and long

string similarity pruning. We conducted

extensive performance studies using 6 real

string datasets.

References

1. Sharing in MULTICS. In Proceedings of

the Fourth Symposium on Operating System

Principles, SOSP 1973, Thomas J. Watson,

Research Center, Yorktown Heights, New

York, USA, October 15-17, 1973.

2. Robert Morris and Ken Thompson.

Password Security: A Case History, 1979.

http://cs-

www.cs.yale.edu/homes/arvind/cs422/

doc/unix-sec.pdf.

3. Philippe Oechslin. Making a faster

cryptanalytic time-memory trade-off. In Dan

Boneh, editor, Advances in Cryptology –

CRYPTO 2003, 23rd Annual International

Cryptology Conference, Santa Barbara,

California, USA, August 17-21, 2003,

Proceedings, volume 2729 of

Lecture Notes in Computer Science, pages

617–630. Springer, 2003.

4. Password Hashing Competition (PHC),

2014. https://password-

hashing.net/index.html.

5. Donghoon Chang, Arpan Jati, Sweta

Mishra, and Somitra Kumar Sanadhya. Rig:

A simple, secure and flexible design for

password hashing. In Dongdai Lin, Moti

Yung, and Jianying Zhou, editors,

Information Security and Cryptology - 10th

International Conference, Inscrypt 2014,

Beijing, China, December 13-15, 2014,

Revised Selected Papers, volume 8957 of

Lecture Notes in Computer Science, pages

361–381. Springer, 2014.

6. Ari Juels and Ronald L. Rivest.

Honeywords: making passwordcracking

detectable. In 2013 ACM SIGSAC

Conference on Computer and

Communications Security, CCS’13, Berlin,

Germany, November 4- 8, 2013, 2013.

7. Fred Cohen. The Use of Deception

Techniques: Honeypots and Decoys.

http://all.net/journal/deception/Deception

Techniques .pdf.

http://cs-www.cs.yale.edu/homes/arvind/cs422/
http://cs-www.cs.yale.edu/homes/arvind/cs422/
http://all.net/journal/deception/Deception

Vol 08 Issue03, Mar 2019 ISSN 2456 – 5083 Page 45

8. Lance Spitzner. Honeytokens: The Other

Honeypot, 2003.

http://www.symantec.com/connect/articles/

honeytokens-other-honeypot.

9. Hristo Bojinov, Elie Bursztein, Xavier

Boyen, and Dan Boneh. Kamouflage: Loss-

resistant password management. In

Computer Security - ESORICS 2010, 15th

European Symposium on Research in

Computer Security, Athens, Greece,

September 20-22, 2010. Proceedings, pages

286–302, 2010.

10. Wikipedia contributors. 2012 LinkedIn

hack. Wikipedia, The Free Encyclopedia,

Date retrieved: 29 May 2016. Available at:

https://en.wikipedia.org/w/index.php?title=2

012 LinkedIn

hack&oldid=722095159.

11. Bruce Schneier. Cryptographic Blunders

Revealed by Adobe’s Password Leak.

Schneier on Security, 2013. Available at:

https://www.schneier.com/blog/archives/201

3/11/ cryptographic b.html.

12. Swati Khandelwal. Hacking any eBay

Account in just 1 minute, 2014. Available

at: http://thehackernews.com/2014/09/

hacking-ebay-accounts.html.

13. Wikipedia contributors. Ashley Madison

data breach. Wikipedia, The Free

Encyclopedia, Date retrieved: 29 May 2016.

Available at:

https://en.wikipedia.org/w/index.php?title=

Ashley Madison data

breach&oldid=721001290.

14. Troy Hunt. Observations and thoughts

on the LinkedIn data breach, 2015.

Available at: https://www.troyhunt.com/

observations-and-thoughts-on-the-linkedin-

data-breach/.

15. Michael Gilleland. Levenshtein

Distance, in Three Flavors. Available at:

http://people.cs.pitt.edu/_kirk/cs1501/assign

ments/editdistance/Levenshtein%20Distance

.htm.

15. Bibliography

(1) Java Complete Reference by Herbert

Shield

(2) Database Programming with JDBC and

Java by George Reese

(3) Java and XML By Brett McLaughlin

(4) Wikipedia, URL:

http://www.wikipedia.org.

(5) Answers.com, Online Dictionary,

Encyclopedia and much more, URL:

http://www.answers.com

 (6) Google, URL: http://www.google.co.in

(7)Project Management URL:

http://www.startwright.com/project.html

http://www.symantec.com/connect/articles/
https://www.schneier.com/blog/archives/2013/11/
https://www.schneier.com/blog/archives/2013/11/
http://thehackernews.com/2014/09/
https://en.wikipedia.org/w/index.php?title
https://www.troyhunt.com/
http://www.wikipedia.org/
http://www.answers.com/
http://www.google.co.in/
http://www.startwright.com/project.html

	(4) Wikipedia, URL: http://www.wikipedia.org.
	(5) Answers.com, Online Dictionary, Encyclopedia and much more, URL: http://www.answers.com

