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Abstract: 

Credit card fraud is a serious problem in financial services. Billions of dollars are lost due 

tocredit card fraud every year. There is a lack of research studies on analyzing real-world credit 

card dataowing to confidentiality issues. In this paper, machine learning algorithms are used to 

detect credit cardfraud. Standard models are firstly used. Then, hybrid methods which use 

AdaBoost and majority votingmethods are applied. To evaluate the model efficacy, a publicly 

available credit card data set is used. Then,a real-world credit card data set from a financial 

institution is analyzed. In addition, noise is added to thedata samples to further assess the 

robustness of the algorithms. The experimental results positively indicatethat the majority voting 

method achieves good accuracy rates in detecting fraud cases in credit cards. 

 

Introduction 

Fraud is a wrongful or criminal deception 

aimed to bring financial or personal gain [1].  

In avoiding loss from fraud, two 

mechanisms can be used: fraud prevention 

and fraud detection.  Fraud prevention is a 

proactive method, where it stops fraud from 

happening in the first place.  On the other 

hand, fraud detection is needed when a 

fraudulent transaction is attempted by a 

fraudster. Credit card fraud is concerned 

with the illegal use of credit card 

information for purchases. Credit card 

transactions can be accomplished either 

physically or digitally [2].  In physical 

transactions, the credit card is involved 

during the transactions.  In digital 

transactions, this can happen over the 

telephone or the internet.  Cardholders 

typically provide the card number, expiry 

date, and card verification number through  

 

telephone or website. With the rise of e-

commerce in the past decade, the use of 

credit cards has increased dramatically [3].  

The number of credit card transactions in 

2011 in Malaysia were at about 320 million, 

and increased in 2015 to about 360 million.  

Along with the rise of credit card usage, the 

number of fraud cases have been constantly 

increased.  While numerous authorization 

techniques have been in place, credit card 

fraud cases have not hindered effectively.  

Fraudsters favour the internet as their 

identity and location are hidden.  The rise in 

credit card fraud has a big impact on the 

financial industry.  The global credit card 

fraud in 2015 reached to a staggering USD 

$21.84 billion [4]. Loss from credit card 

fraud affects the merchants, where they bear 

all costs, including card issuer fees, charges, 

and administrative charges [5].  Since the 
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merchants need to bear the loss, some goods 

are priced higher, or discounts and 

incentives are reduced.  Therefore, it is 

imperative to reduce the loss, and an 

effective fraud detection system to reduce or 

eliminate fraud cases is important.  There 

have been various studies on credit card 

fraud detection.  Machine learning and 

related methods are most commonly used, 

which include artificial neural networks, 

rule-induction techniques, decision trees, 

logistic regression, and support vector 

machines [1].  These methods are used 

either standalone or by combining several 

methods together to form hybrid models. 

IEEE In this paper, a total of twelve 

machine learning algorithms are used for 

detecting credit card fraud.  The algorithms 

range from standard neural networks to deep 

learning models.  They are evaluated using 

both benchmark and realworld credit card 

data sets.  In addition, the AdaBoost and 

majority voting methods are applied for 

forming hybrid models.  To further evaluate 

the robustness and reliability of the models, 

noise is added to the real-world data set.  

The key contribution of this paper is the 

evaluation of a variety of machine learning 

models with a real-world credit card data set 

for fraud detection.  While other researchers 

have used various methods on publicly 

available data sets, the data set used in this 

paper are extracted from actual credit card 

transaction information over three months. 

The organization of this paper is as follows. 

Existing system: 

Three methods to detect fraud are presented. 

Firstly, clustering model is used to classify 

the legal and fraudulent transaction using 

data clusterization of regions of parameter 

value. Secondly, Gaussian mixture model is 

used to model the probability density of 

credit card user's past behavior so that the 

probability of current behavior can be 

calculated to detect any abnormalities from 

the past behavior. Lastly, Bayesian networks 

are used to describe the statistics of a 

particular user and the statistics of different 

fraud scenarios. The main task is to explore 

different views of the same problem and see 

what can be learned from the application of 

each different technique.  

Proposed system: 

Total of twelve machine learning 

algorithmsare used for detecting credit card 

fraud. The algorithmsrange from standard 

neural networks to deep learningmodels. 

They are evaluated using both benchmark 

and realworldcredit card data sets. In 

addition, the AdaBoost andmajority voting 

methods are applied for forming 

hybridmodels. To further evaluate the 

robustness and reliability ofthe models, 

noise is added to the real-world data set. 

Thekey contribution of this paper is the 

evaluation of a varietyof machine learning 

models with a real-world credit carddata set 

for fraud detection 

Architecture Diagram 
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Modules: 

1. Standard Neural Networks To 

Deep Learning 

The Feed-Forward Neural Network 

(NN) uses thebackpropagation algorithm 

for training as well. Theconnections 

between the units do not form a directed 

cycle,and information only moves 

forward from the input nodes tothe 

output nodes, through the hidden nodes. 

Deep Learning(DL) is based on an MLP 

network trained using a 

stochasticgradient descent with 

backpropagation. It contains a 

largenumber of hidden layers consisting 

of neurons with tanh,rectifier, and 

maxout activation functions. Every 

nodecaptures a copy of the global model 

parameters on local data,and contributes 

periodically toward the global model 

usingmodel averaging. 

 

2. Forming Hybrid Models 

Adaptive Boosting or AdaBoost is 

used in conjunction withdifferent types 

of algorithms to improve their 

performance.The outputs are combined 

by using a weighted sum, 

whichrepresents the combined output of 

the boosted classifier, AdaBoost tweaks 

weak learners in favor of 

misclassifieddata samples. It is, 

however, sensitive to noise and 

outliers.As long as the classifier 

performance is not random,AdaBoost is 

able to improve the individual results 

fromdifferent algorithms.Majority voting 

is frequently used in data 

classification,which involves a combined 

model with at least twoalgorithms. Each 

algorithm makes its own prediction 

forevery test sample. The final output is 

for the one thatreceives the majority of 

the votes, 

3. Evaluate The Robustness And 

Reliability 

To further evaluate the robustness of 

the machine learningalgorithms, all real-

world data samples are corrupted 

noise,at 10%, 20% and 30%. Noise is 

added to all data features.It can be seen 

that with the addition of noise,the fraud 

detection rate and MCC rates deteriorate, 

asexpected. The worst performance, i.e. 

the largest decrease inaccuracy and 

MCC, is from majority voting of 

DT+NB andNB+GBT. DS+GBT, 

DT+DS and DT+GBT show 

gradualperformance degradation, but 

their accuracy rates are stillabove 90% 

even with 30% noise in the data set. 

Algorithm 

1. Machine Learning Algorithm 

A total of twelve algorithms are 

used in this experimentalstudy. They are 

used in conjunction with the AdaBoost 

andmajority voting methods.Naïve 

Bayes (NB) uses the Bayes’ theorem 

with strong ornaïve independence 

assumptions for classification. 

Certainfeatures of a class are assumed to 

be not correlated to others.It requires 

only a small training data set for 

estimating themeans and variances is 

needed for classification.The 

presentation of data in form of a tree 

structure is usefulfor ease of 

interpretation by users. The Decision 

Tree (DT) isa collection of nodes that 

creates decision on featuresconnected to 
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certain classes. Every node represents a 

splittingrule for a feature. New nodes are 

established until the stoppingcriterion is 

met. The class label is determined based 

on themajority of samples that belong to 

a particular leaf. TheRandom Tree (RT) 

operates as a DT operator, with 

theexception that in each split, only a 

random subset of featuresis available. It 

learns from both nominal and numerical 

datasamples. The subset size is defined 

using a subset ratioparameter. 

Conclusion: 

A study on credit card fraud detection using 

machine learning algorithms has been 

presented in this paper.  A number of 

standard models which include NB, SVM, 

and DL have been used in the empirical 

evaluation.  A publicly available credit card 

data set has been used for evaluation using 

individual (standard) models and hybrid 

models using AdaBoost and majority voting 

combination methods.  The MCC metric has 

been adopted as a performance measure, as 

it takes into account the true and false 

positive and negative predicted outcomes.  

The best MCC score is 0.823, achieved 

using majority voting.  A real credit card 

data set from a financial institution has also 

been used for evaluation.  The same 

individual and hybrid models have been 

employed.  A perfect MCC score of 1 has 

been achieved using AdaBoost and majority 

voting methods.  To further evaluate the 

hybrid models, noise from 10% to 30% has 

been added into the data samples.  The 

majority voting method has yielded the best 

MCC score of 0.942 for 30% noise added to 

the data set.  This shows that the majority 

voting method is stable in performance in 

the presence of noise.   For future work, the 

methods studied in this paper will be 

extended to online learning models.  In 

addition, other online learning models will 

be investigated.  The use of online learning 

will enable rapid detection of fraud cases, 

potentially in real-time.  This in turn will 

help detect and prevent fraudulent 

transactions before they take place, which 

will reduce the number of losses incurred 

every day in the financial sector.    
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