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Abstract: 

Approximate nearest neighbor (ANN) search has achieved great success in many tasks. 

However, existing popular methods for ANN search, such as hashing and quantization methods, 

are designed for static databases only. They cannot handle well the database with data 

distribution evolving dynamically, due to the high computational effort for retraining the model 

based on the new database. In this paper, we address the problem by developing an online 

product quantization (online PQ) model and incrementally updating the quantization codebook 

that accommodates to the incoming streaming data. Moreover, to further alleviate the issue of 

large scale computation for the online PQ update, we design two budget constraints for the 

model to update partial PQ codebook instead of all. We derive a loss bound which guarantees the 

performance of our online PQ model. Furthermore, we develop an online PQ model over a 

sliding window with both data insertion and deletion supported, to reflect the real-time behaviour 

of the data. The experiments demonstrate that our online PQ model is both time-efficient and 

effective for ANN search in dynamic large scale databases compared with baseline methods and 

the idea of partial PQ codebook update further reduces the update cost. 

Index Terms—Online indexing model, product quantization, nearest neighbour search. 

 

Introduction 

We have presented our online PQ method to 

accommodate streaming data. In addition, 

we employ two budget constraints to 

facilitate partial codebook update to further 

alleviate the update time cost. A relative loss 

bound has been derived to guarantee the 

performance of our model. In addition, we 

propose an online PQ over sliding window 

approach, to emphasize on the real-time 

data. Experimental results show that our 

method is significantly faster in 

accommodating the streaming data, 

outperforms the competing online hashing 

methods and unsupervised batch mode  

 

 

hashing method in terms of search accuracy 

and update time cost, and attains comparable 

search quality with batch mode PQ. 

Existing system: 

ANN search in a dynamic database has 

widespread applications in the real world. 

For example, a large number of news 

articles are generated and updated on 

hourly/daily basis, so a news searching 

system requires to support news topic 

tracking and retrieval in a frequently 

changing news database. For object 

detection in video surveillance, video data is 

continuously recorded, so that the distances 
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between/among similar or dissimilar objects 

are continuously changing. For image 

retrieval in dynamic databases, relevant 

images are retrieved from a constantly 

changing image collection, and the retrieved 

images could therefore be different over 

time given the same image query. In such an 

environment, real-time query needs to be 

answered based on all the data collected to 

the database so far. 

Proposed system: 

Product quantization (PQ) is an effective 

and successful alternative solution for ANN 

search. PQ partitions the original space into 

a Cartesian product of low dimensional 

subspaces and quantizes each subspace into 

a number of sub-codewords. In this way, PQ 

is able to produce a large number of code 

words with low storage cost and perform 

ANN search with inexpensive computation. 

Moreover, it preserves the quantization error 

and can achieve satisfactory recall 

performance. Most importantly, unlike 

hashing-based methods representing each 

data instance by a hash code, which depends 

on a set of hash functions, quantizationbased 

methods represent each data instance by an 

index, which associates with a codeword 

that is in the same vector space with the data 

instance. However, PQ is a batch mode 

method which is not designed for the 

problem of accommodating streaming data 

in the model. Therefore, to address the 

problem of handling streaming data for 

ANN search and tackle the challenge of 

hash code recomputation, we develop an 

online PQ approach, which updates the 

codewords by streaming data without the 

need to update the indices of the existing 

data in the reference database, to further 

alleviate the issue of large scale update 

computational cost. 

Architecture Diagram 

 
Modules: 

Mini-batch Extension: 

In addition to processing one streaming data 

at a time, our framework can also handle a 

mini-batch of data at a time. In the case of 

processing mini-batch of data, we assume 

that each time we get a new batch of data 

points. where B is the size of the mini-batch. 

Partial Codebook Update: 

As we mentioned in the introduction, one of 

the issues is that online indexing model 

might incur high computational cost in 

update. Each new incoming data point might 

contribute in different significance of 

changes in different subspaces of nearest 

sub-codeword update. An obvious example 

of this is that, given a new streaming data, 

one of its sub-vector is far from its nearest 

sub-codeword and another of its sub-vector 

is close to its nearest sub-codeword then the 

first one contributes more in PQ index 

update than the second one. 

LOSS BOUND: 

Our model, on the other hand, is non-convex 

and has matrices as variables, which makes 
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the analysis nontrivial to be handled. 

Moreover, each of the continuously learned 

codewords may not be consistently 

matching with each codeword in the best 

fixed batch model. 

Conclusion: 

We have presented our online PQ method to 

accommodate streaming data. In addition, 

we employ two budget constraints to 

facilitate partial codebook update to further 

alleviate the update time cost. A relative loss 

bound has been derived to guarantee the 

performance of our model. In addition, we 

propose an online PQ over sliding window 

approach, to emphasize on the real-time 

data. Experimental results show that our 

method is significantly faster in 

accommodating the streaming data, 

outperforms the competing online hashing 

methods and unsupervised batch mode 

hashing method in terms of search accuracy 

and update time cost, and attains comparable 

search quality with batch mode PQ. 
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