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Abstract: 

Measurement capabilities are essential for a variety of network applications, such as load 

balancing, routing, fairness, and intrusion detection. These capabilities require large counter 

arrays in order to monitor the traffic of all network flows. While commodity SRAM memories 

are capable of operating at line speed, they are too small to accommodate large counter arrays. 

Previous works suggested estimators, which trade precision for reduced space. However, in order 

to accurately estimfdate the largest counter, these methods compromise the accuracy of the 

smaller counters. In this paper, we present a closed form representation of the optimal estimation 

function. We then introduce independent counter estimation buckets, a novel algorithm that 

improves estimation accuracy for all counters. This is achieved by separating the flows to 

buckets and configuring the optimal estimation function according to each bucket’s counter 

scale. We prove a tighter upper bound on the relative error and demonstrate an accuracy 

improvement of up to 57 times on real Internet packet traces. 

 

Introduction 

COUNTER arrays are essential in network 

measurements and accounting.Typically, 

measurement applications track several 

million flows [1], [2], and their counters are 

updated with the arrival of every packet. 

These capabilities are an important enabling 

factor for networking algorithms in many 

fields such as load balancing, routing, 

fairness, network caching and intrusion 

detection [3]–[7]. Counter arrays are also 

used in popular approximate counting 

sketches such as multi stage filters [8] and 

count min sketch [9], as well as in network 

monitoring architectures [10]–[12]. Such 

architectures are used to collect and analyze 

statistics from many networking devices 

[13]. Implementation of counter arrays is  

 

 

particularly challenging due to the 

requirement to operate at line speed. 

Although commodity SRAM memories are 

fast enough for this task, they do not meet 

the space requirements of modern counter 

arrays. Implementing a counter array 

entirely in SRAM is therefore very 

expensive [14].Counter estimation 

algorithms use shorter counters, e.g., 12-bits 

instead of 32-bits, at the cost of a small 

error. Upon packet arrival, a counter is only 

incremented with a certain probability that 

depends on its current value. In order to 

keep the relative error uniform, small values 

are incremented with high probability and 

large ones with low probability. An 

emphestimation function is used in order to 
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determine these probabilities and estimate 

the true value of a counter. Estimation 

functions can be scaled to achieve higher 

counting capacity at the cost of a larger 

estimation error. Existing counter estimation 

techniques suffer from the following 

problem when facing skewed workloads, as 

is common in computer networks, a 

phenomenon known as heavy hitters. 

Accommodating the counting capacity 

required by the heavy hitters forces using a 

large estimation function scale. However, 

since the heavy hitters often share the same 

function scale as other counters, the 

estimation errors for small counters, which 

correspond to the majority of items, become 

very large. 

Existing system: 

Counter arrays are essential in network 

measurements and accounting. Typically, 

measurement applications track several 

million flows and their counters are updated 

with the arrival of every packet. Counter 

estimation algorithms use shorter counters, 

e.g., 12-bits instead of 32-bits, at the cost of 

a small error. Upon packet arrival, a counter 

is only incremented with a certain 

probability that depends on its current value. 

In order to keep the relative error uniform, 

small values are incremented with high 

probability and large ones with low 

probability. An emphestimation function is 

used in order to determine these 

probabilities and estimate the true value of a 

counter. Estimation functions can be scaled 

to achieve higher counting capacity at the 

cost of a larger estimation error. Existing 

counter estimation techniques suffer from 

the following problem when facing skewed 

workloads, as is common in computer 

networks, a phenomenon known as heavy 

hitters. Accommodating the counting 

capacity required by the heavy hitters forces 

using a large estimation function scale. 

Proposed system: 

We are the first to present a closed form 

explicit representation of an optimal 

estimation function. This enables us to 

extensively study the various aspects of this 

function using rigorous mathematical 

analysis, including the relation between its 

relative error, memory complexity, 

estimation symbol range, and even bound 

the probability of the actual error exceeding 

a certain value. We present Independent 

Counter Estimation Buckets (ICE-Buckets), 

a novel counter estimation technique that 

reduces the overall error by efficiently 

utilizing multiple counter scales.  We then 

propose the ICE-buckets technique, which 

divides counters into buckets, where each 

bucket is maintained with its own scale 

parameter, thereby greatly reducing the 

relative error. ICE-Buckets are also 

analyzed, and we show a methodological 

way of configuring its parameters. Finally, 

we simulate ICE-Buckets using 5 real world 

traces and compare it to state of the art 

approaches, demonstrating its substantial 

benefits. 

Modules: 

1. Local Upscale: The configuration of the 

data structure, {wi}B−1 i=0 , is dynamically 

adjusted to the biggest estimation value in 

each bucket. Initially, and bucket scales are 

set to Zero. Whenever a symbol Fij 

approaches L, we increment wi and upscale 

Bucket i to use the parameter wi+1. This is 

done by up scaling all of the flows in bucket 

i using the symbol upscale procedure. A 
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pseudo code of the local upscale procedure. 

We note that since the number of counters 

per bucket S is small, local upscale can be 

efficiently implemented. 

2. Global Upscale: When a counter in a 

bucket with the maximum scale index (E 

−1) approaches its maximum value (L − 1), 

we initiate a global upscale procedure to 

prevent overflow. The procedure doubles the 

size of step. Buckets with odd wis perform a 

local upscale. Then, every bucket i updates 

its scale index to wi/2..  

Conclusion: 

A novel counters estimation data structure 

that minimizes the relative error. ICE-

Buckets use the optimal estimation function 

with a scale that is optimized independently 

for each bucket. We first described an 

explicit representation of this func-tion, 

which was previously known only in 

recursive form. We extended its analysis and 

showed a method to measure the effect of 

upscale operations on the relative error. This 

function is used in ICE-Buckets to minimize 

the error in each bucket. 
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