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Abstract— Organic-inorganic perovskite solar cells (PSC) are drawing interest towards 

photovoltaic device fabrications due to low raw materials cost, easy room temperature 

fabrications, and exhibiting excellent tunable optoelectronic properties. Power conversion 

efficiency increased dramatically in the last few years despite challenges like instability in 

moisture and high ambient temperature conditions. However, techniques employed like 

encapsulation used to reduce perovskite degradation rate, long-term stability still an issue for 

commercial scale-up. Most of the perovskite materials, more precisely halide perovskites, are 

affected by the ambient humid conditions. In this present study, we explore the recent 

development of different strategies to fabricate moisture-resistant stable perovskite solar cell 

fabrication. This review discusses the structural influence on the stability of PSC.  
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1. INTRODUCTION 

The enhancement and development of 

renewable energy have attained much more 

attention due to a continuous increase in 

energy demand. Comparing with any other 

renewable energy sources, solar energy is 

abundantly available and comparatively 

cheap than traditional energy sources. 

Nanotechnology is a vast research area and 

has a wider application, including solar cells 

where nanomaterials are widely used for 

rapid development in photovoltaics [1].  

 

 

Among the third generation solar cells, 

perovskite solar cells' efficiency improves 

from ~3% to ~22%, in a brief period (less 

than ten years). Dye-sensitized solar cells 

and organic solar cells are among the third 

generation solar cells but do not achieve the 

performance like perovskite devices [2]. 

The first photochemical reaction was found 

by the French physicist Becquerel in 1839. 

Production of current by the application of 
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radiation of sunlight was discovered by 

British scientist Adams [3]. In 1883, the first 

semiconductor solar cell was successfully 

prepared by Fritt's using a very thin layer of 

gold with germanium coating, though the 

efficiency was abysmal (~1%). In the year 

1954, Pearson led Bell labs to develop 

crystalline solar cells with a 4.5% efficiency 

started a new chapter in photovoltaics [4].  

Due to polycrystalline structure and grain 

boundaries (GB), two scientist groups 

discovered that it might improve the PCE of 

perovskite solar cells [5,6]. Yang's group 

reported recombination of the carrier near 

the grain boundaries can be minimized by 

forming PbI2 near grain boundaries, and 

grain passivation can also improve the PCE. 

But an excessive accumulation of Pb may be 

caused degradation of perovskite materials 

as controlling the amount of Pb is very 

difficult. Seko's group reported that the 

presence of PbI2 in perovskite material 

reduces the hysteresis effect, ionic migration 

[7]. Although perovskite solar cells have 

attained high efficiency within a short 

period, it still faces some obstacles such as 

ionic migration [8-10], hysteresis [11-12], 

heavy metal lead [13-16], light soaking [17], 

etc.  

Perovskite materials degrade faster in humid 

ambient due to Pb salt and ammonium 

precursors [18-20]. Some minor factors, i.e., 

phase transition [21-23], thermal 

decomposition [24,25], and bias induced ion 

migration [26], leads to degrading the 

perovskite materials. As a result, the 

stability of the PSC is a vital issue compared 

to other PV technology. Many reviews have 

been published based on the degradation 

mechanism of PSC and strategies to 

improve the PCE. But moisture-stable 

nanostructured PSC is quite a new approach.  

In this review, we are going to demonstrate 

the structural influence on the stability of 

PSC. The major problems associated with 

PSC's stability and development of moisture 

tolerance in perovskite materials by 

adjustment of crystal structure, interface 

modification by using low dimensional 

perovskite, i.e., 0D, 2D, and quasi-2D and 

facile hydrophobic passivation method.  

2. Effect on the stability of the perovskite 

solar cell by structure alteration  

2.1 Mesoporous structure 

High porosity and large precise surface area 

(up to 10
3
 m

2
/s) are the main advantages of 

mesoporous materials. It is present in 

perovskite in the form of metal oxide to 

increase the efficiency of the device. As 

shown in fig.4, the perovskite device 
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architecture consists of an electron transport 

layer, light-absorbing material like 

perovskite, hole transport layer, and metal 

electrodes. TiO2 is very commonly used as 

the mesoporous material as it permits the 

nanocrystal to penetrate through the pores of 

TiO2 to form an absorbing layer. Besides, 

TiO2 also helps to transport electrons, 

preventing the recombination of electron-

hole pairs, thus improving the device's 

efficiency. The holes are generated in the 

perovskite absorbing layer, hole transport 

materials block the electrons and collected 

the generated holes, and transfers charges 

via metal electrodes. Spiro-OMeTAD is the 

most commonly used hole transport material 

in PSCs.  

The advantages of using this kind of 

structure are (i) less recombination tendency 

between electron and holes and (ii) 

sufficient diffusion length to collect 

electrons and holes virtually [35]. Qiu et al. 

reported that all-solid-state 1D perovskite 

solar cell gives PCE near about 4.87% and 

open-circuit voltage of 0.82V. He has also 

observed that the PCE has increased linearly 

and then decreased with increasing the 

diffusion length [36]. MAPbI3 solar cell 

with mesoporous TiO2 nanostructure 

scaffolding reported a FF of 0.62 and PCE 

9.7% by  Kim et al. The efficiency of PSCs 

can be improved significantly by the two-

step solution deposition method [37,38]. 

Al2O3 can replace the role of TiO2, but it 

has some drawbacks, (i) Al2O3 acts only as a 

supportive layer in PSC (ii) the electrons are 

not absorbed by the conduction band of 

Al2O3 but directly transmitted to FTO 

conductive layer. They were thus decreasing 

the efficiency of the perovskite solar cells. 

Lee et al. observed Voc of  980mV,  FF of 

0.63, and PCE of 10.9% when they used 

Al2O3 as a supporting material to 

manufacture MAPbI3 PSCs. After 

modification of the process, conversion 

efficiency increased to 12.3% [39]. 

2.2. Simple Planar Heterojunction 

Structured Solar Cells 

It can be observed, the mesoporous metal 

oxide structure is removed, which makes a 

significant difference from mesoporous 

structure solar cells. The device fabrication 

attracts more interest due to the easy low-

temperature fabrication procedure with high 

power conversion efficiency PCE. As the 

metal oxide portion is being removed and 

perovskite material is sandwiched between 

electron transport material (ETM) and hole 

transport material (HTM), there forms an 

interface between ETM and perovskite; 
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thus, the efficient separation of an electron 

can be possible. Similarly, another one 

interfacial layer is formed between 

perovskite material and HTM, and hole 

separation can also occur effectively. 

According to Snaith's group, they made a 

heterojunction structured perovskite solar 

cell by FTO/ TiO2/MAPbI2Cl/spiro-

OMeTAD/Ag and obtained an efficiency of 

1.8%. As the efficiency value does not give 

a satisfactory result, these same groups 

designed a series of solar cells. They 

achieved an open circuit voltage of 1.03 volt 

under the optimized situation, an efficiency 

of 15.7%, and a fill factor of 0.749 [36]. 

Wang et al. reported that they achieved an 

efficiency of 15 % for CH3NH3PbI3 and 18 

% for MA0.7FA0.3PbI3-xClx and a fill factor 

of 0.80 when used very high-quality lead 

halide crystal as a precursor solution. They 

achieved an excellent performance of PSC 

by optimizing the precursor solution. The 

advantage of using these precursor solutions 

are, (i) the rapid growth of perovskite 

crystal, thereby improves the perovskite 

light absorbance's characteristics, a 

significant reduction in crystal defect, and 

also reduces the tendency of charge 

recombination. (ii) increase the tendency of 

charge collection and transportation [40]. 

Zhou et al. used yttrium-doped TiO2 in his 

experiment as an electron transport material 

and observed that the electron's mobility 

increased rapidly. Actually, by tuning the 

humidity, the defect density of PSC film is 

reduced significantly, and lead chloride and 

methylammonium iodide form the 

perovskite film. The outcome possesses 

excellent PCE improvement with a notable 

19.3% and a high open-circuit voltage [41]. 

2.3. Inverted structure perovskite solar cells 

Inverted structure perovskite device looks 

similar to organic solar cells' structure at the 

beginning [42]. Phenyl-C61-butyric acid 

methyl ester (PCBM) is widely used as an 

electron transport layer and poly-styrene 

sulfonic acid (PEDOT: PSS) or NiO plays 

an essential role as a p-type hole transport 

layer. Yang Bai et al. reported an inverted 

structure PSC having a nanocrystal layer of 

NiO (relatively rough) as a hole transport 

layer and normal PCBM as electron 

transport material [43]. It was observed that 

to form a stable perovskite layer, the rough 

nature of NiO is suitable. There is one more 

advantage of using a rough layer that makes 

a favorable condition for hole extraction. 

Now focusing on electron transport material, 

it is required to form a uniform PCBM layer 

where film defects are negligible. As a 

result, undesirable electron-hole 
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recombination between the perovskite layer 

and the metal electrode is minimized.  

 

The solution is to modify the technique of 

manufacturing PCBM. In general, PCBM 

layer is made by a spin-coating process, and 

to optimize the spin-coating method, speed 

and precursor solution must be changed. But 

the formation of an excellent quality thin 

film of PCBM over the rough surface is 

quite challenging due to the less viscous 

property of the PCBM solution. Yang Bai et 

al. also reported that the small addition of 

polystyrene (PS) 1.5 wt% into the PCBM 

solution improves the property of the thin 

film. It also reduces the tendency of 

recombination between electron-hole in the 

electron transport layer. This feature 

contributes to the enhancement of PCE from 

9.56% to 10.68% [44]. 

 

3. Conclusions and outlook 

The degradation of perovskite materials 

under humid ambient conditions is going 

through continuous research and attracts 

more attention as poor understanding of 

chemical stability needs to be explored 

more. Improving water retention ability by 

encapsulation or proper interfacial 

engineering must be employed to address 

PSC's stability. Several factors, including 

modification of HTM/ETM layer, layer 

architecture, compositional, and crystal 

structure engineering, modulate PSC 

materials' chemical stability. Encapsulation 

or coating is the cheapest, versatile, and easy 

to do, unlike interfacial modifications that 

impact the solar cells' life span due to the 

interfacial doping. The researchers are now 

more focused on developing new perovskite 

structured nanomaterials that have inherent 

water stability without showing other 

undesirable side effects or compromising 

the cell's efficiency. 
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