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Abstract: 

Frequent itemsets mining with differential privacy refers to the problem of mining all frequent 

itemsets whose supports are above a given threshold in a given transactional dataset, with the 

constraint that the mined results should not break the privacy of any single transaction. Current 

solutions for this problem cannot well balance efficiency, privacy and data utility over large 

scaled data. Toward this end, we propose an efficient, differential private frequent itemsets 

mining algorithm over large scale data. Based on the ideas of sampling and transaction 

truncation using length constraints, our algorithm reduces the computation intensity, reduces 

mining sensitivity, and thus improves data utility given a fixed privacy budget. Experimental 

results show that our algorithm achieves better performance than prior approaches on multiple 

datasets. 

 

Introduction: 

In recent years, with the explosive growth of 

data and the rapid development of 

information technology, various industries 

have accumulated large amounts of data 

through various channels. To discover useful 

knowledge from large amounts of data for 

upper-layer applications (e.g. business 

decisions, potential customer analysis, etc.), 

data mining [1]–[9] has been developed 

rapidly. It has produced a positive impact in 

many areas such as business and medical 

care.Along with the great benefits of these 

advances, the large amount of data also 

contains privacy sensitive information,which 

may be leaked if not well managed. For 

instance, smartphone applications are 

recording the whereabouts of users through 

GPS sensors and are transferring the data to 

their servers. Medical records are also  

 

storing potential relationships between 

diseases and a variety of data. Mining on 

user location data or medical record data 

both provide invaluableinformation; 

however, they may also leak user privacy. 

Thus mining knowledge under confident 

privacy guarantees is highly expected.This 

paper investigates how to mine frequent 

itemsets with privacy guarantee for big data. 

We consider the following application 

scenario. A company (such as information 

consulting firm) has a large-scale dataset. 

The company would like to make the dataset 

public and therefore allow the publicto 

execute frequent itemsets mining for getting 

cooperationor profits. But due to privacy 

considerations, the company cannot provide 

the original dataset directly. Therefore, 

privacy mechanisms are needed to process 
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the data, which is the focus of this paper.To 

ensure privacy of data mining, traditional 

methods are based on k-anonymity and its 

extended models [10]–[16].These methods 

require certain assumptions; it is difficult to 

protect privacy when the assumptions are 

violated. The insufficiency of k-anonymity 

and its extended models is that here is no 

strict definition of the attack model, and that 

the knowledge of the attacker cannot be 

quantitatively defined.To pursue strict 

privacy analysis, work proposed a strong 

privacy protection model called differential 

privacy [17]. This privacy definition features 

independence of background knowledge of 

the attacker and proves very useful.Frequent 

pattern mining with privacy protection has 

also received extensive attention. As 

preliminary methods [18]–[24], these works 

have provided a lot of contributions in this 

area. But with the advance of research, these 

privacy methods have not been able to 

provide effective privacy. In order to 

overcome these difficulties, researches 

began to focus on the differential privacy 

protection framework [25]–[31]. Although 

guaranteeing privacy temporary, however, 

the balance between privacy and utility of 

frequent itemsets mining results needs to be 

further pursued. 

In this paper, we propose a novel differential 

private frequent itemsets mining algorithm 

for big data by merging the ideas of [27], 

[30], which has better performance due to 

the new sampling and better truncation 

techniques. We build our algorithm on FP-

Tree for frequent itemsets mining. In order 

to solve the problem of building FP-Tree 

with large-scale data,we first use the 

sampling idea to obtain representative data 

to mine potential closed frequent itemsets, 

which are later used to find the final 

frequent items in the large-scale data. In 

addition,we employ the length constraint 

strategy to solve the problem of high global 

sensitivity. Specifically, we use string 

matching ideas to discover the most similar 

string in the source dataset,and implement 

transaction truncation for achieving the 

lowest information loss. We finally add the 

Laplace noise for frequent itemsets to ensure 

privacy guarantees.A few challenges exist: 

First, how to design a sampling method to 

control the sampling error? We use the 

central limit theorem to calculate a 

reasonable sample size to control the error 

range. After obtaining the sample size, the 

dataset is randomly sampled using a data 

analysis toolkit. The second challenge is 

how to design a good string matching 

method to truncate the transaction without 

losing information as far as possible? We 

match the potential itemsets in the sample 

data to find the most similar items and then 

merge them with the most frequent items 

until the maximum length constraint is 

reached 

Existing system: 

Explosive growth of data and the rapid 

development of information technology, 

various industries have accumulated large 

amounts of data through various channels. 

To discover useful knowledge from large 

amounts of data for upper-layer applications 

(e.g. business decisions, potential customer 

analysis, etc.), data mining has been 

developed rapidly. It has produced a positive 

impact in many areas such as business and 

medical care. Along with the great benefits 

of these advances, the large amount of data 
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also contains privacy sensitive information, 

which may be leaked if not well managed. 

For instance. Medical records are also 

storing potential relationships between 

diseases and a variety of data. Mining on 

user location data or medical record data 

both provide invaluable information; 

however, they may also leak user privacy. 

The company would like to make the dataset 

public and therefore allow the public to 

execute frequent itemsets mining for getting 

cooperation or profits. But due to privacy 

considerations, the company cannot provide 

the original dataset directly. Therefore, 

privacy mechanisms are needed to process 

the data. 

Proposed system: 

We propose a novel differential private 

frequent itemsets mining algorithm for big 

data by merging the ideas, which has better 

performance due to the new sampling and 

better truncation techniques. We build our 

algorithm on FP-Tree for frequent itemsets 

mining. In order to solve the problem of 

building FP-Tree with large-scale data, we 

first use the sampling idea to obtain 

representative data to mine potential closed 

frequent itemsets, which are later used to 

find the final frequent items in the large-

scale data. 

Modules: 

Admin 

In this module, the Cloud has to login by 

using valid user name and password. After 

login successful he can do some operations 

such as List all users and authorize,  View 

all company users and authorize Add all 

company name and view,  View all 

company details with rank and 

reviews,View all companies by Frequent 

Item sets Mining using FP-Tree format and 

give link on company name view its details, 

View all user search transaction by 

keyword, Show search ratio by keyword, 

Find top k Frequent item sets by ranks View 

all companies rank by chart, View all search 

ratio by keyword in chart 

View and Authorize Users 

In this module, the admin can view the list 

of users who all registered. In this, the 

admin can view the user’s details such as, 

user name, email, address and admin 

authorizes the users. 

Production Company 

In this module, there are n numbers of 

Owners are present. Owner should register 

before doing any operations. Once registers, 

their details will be stored to the database.  

After registration successful, he has to login 

by using authorized user name and 

password. Once Login is successful Owner 

will do some operations like View your 

profile, Add company data set,                    

View your company details with reviews 

and rank, View user search transactions on 

your company, View other related 

companies by Frequent Itemsets Mining 

using FP-Tree format and give link on 

company name view its details 

Users 

In this module, there are n numbers of users 

are present. User should register before 

doing any operations. Once user registers, 

their details will be stored to the database.  

After registration successful, he has to login 

by using authorized user name and 

password. Once Login is successful user 

will do some operations like View your 

profile, Search companies by  keyword and 

show all  related companies by FP-Tree 
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format and give link on company name view 

its details, view its details with 

image(increment rank),review , show other 

review also, find search ratio, View your 

search transactions by keyword 

Conclusion: 

In this paper, we propose a novel 

differentially private algorithm for frequent 

itemsets mining. The algorithm features 

better data utility and better computation 

efficiency. Various experimental evaluations 

validate that the proposed algorithm has 

high F-Score and low relative error. A 

lesson learned is that fine tuned parameters 

lead to better differentially private frequent 

itemsets mining algorithms with regard to 

data utility. 
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