
  
Abstract— Video dehazing has a huge demand in 
intelligent transportation, advanced driver assistance 
systems (ADAS), long-range surveillance, object tracking, 
lane departure detection, autonomous aerial vehicles and 
endoscopic surgery. But the traditional techniques which 
are available for dehazing are lagged with over saturates 
the dehazed image, constant atmospheric light model, not 
compact to uneven haze. In this paper, we proposed the 
efficient and adaptive identification and removal of haze 
from the video by integrating the Multi scale fusion 
concept into the transmission maps refinement. And also 
we have the model of atmospheric light estimation using 
internal patch recurrence which is strong prior for blind 
dehazing of the video frames to solve a various ill-posed 
visual issues. Transmission map estimation unit in our 
system has two models. One is that optimal transmission 
map computation under a heuristic assumption in the 
dehazing model to preserve the depth consistency of the 
frame. Second is that dark Channel Prior based 
transmission map prediction for multiple scales. With the 
constraints on the solution space, we then incorporate two 
scene priors, including locally consistent scene radiance 
and context-aware scene transmission, to formulate a 
constrained minimization problem and solve it by 
quadratic programming. We propose a Multi-scale 
Optimal Fusion (MOF) model to fuse pixel-wise and patch-
wise transmission maps optimally to avoid misestimated 
transmission region. This MOF is then embedded into 
patch-wise dehazing to suppress halo 
artifacts. Quantitative and Qualitative results of proposed 
algorithm are computed and compared with the existing 
methods. These performance analysis shows that our 
proposed algorithm achieves the noteworthy 
improvements over the previous methods. 
 

Index Terms—Video dehazing, Dark Channel Prior, 
Atmoshpheric Light, Transmission Map, Multi Scale Fusion. 
 

I. INTRODUCTION 

owadays photos have become an inevitable part of our 
lives. The purpose may vary with the situations. The light 

received on an image acquisition device gets deteriorated due 
to the presence of haze, mist, fog, dust, and smoke. These tiny 

 
 

 

H(𝑥) = 𝑇(𝑥)𝐹(𝑥) + (1 − 𝑇(𝑥))𝐴𝐿                [1] 
 
where T(x) is the corresponding attenuation factor, known as 
the transmission 

𝑇(𝑥) = 𝑒−𝛽𝑌(𝑥)                                   [2] 
 
where 𝛽 is a scattering coefficient and Y(x) is the distance to 
the scene point. T(x) is typically assumed to be the same for 
all three color channels (R,G,B) [3, 4]. 
 
The main difficulty in solving single image dehazing is the 
double unknowns of the haze-free image F(x,y) and the scene 
depth D(x,y). Some previous work used multiple images of the 
same scene taken under different angles of polarization [7] or 
under different weather conditions [8] to derive a haze-free 
image. However, acquisition of multiple images may not be 
possible in real applications. On the other hand, some 
approaches did try to tackle the single image dehazing 
problem using either user-input vanishing point [9] or an 
accurate depth map [10]. The dehazing performance then 
highly depends on the accuracy of the given depth map.  
 
Early methods utilize various priors to settle the ill-posed 
problem so that the image can be restored. He et al. [11] 
proposed the theory of dark channel prior (DCP) for the 
prediction of transmission map. Zhu et al. [12] reconstructs 
transmission map based on the observation of color 
attenuation prior (CAP). Those prior-based methods are not 
robust enough in real-world scene. Recently, learning based 
methods are more popular because of the rise of deep learning. 
Some of them use convolutional neural network (CNN) to 
estimate the parameter of the physical model and restore clear 
images. A common practice is to use deep neural networks to 
predict transmission maps from the hazy images [13] [14], 
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particles absorb and scatter radiance traveling from an object 
point to the observer plane. This phenomenon not only reduces
 object visibility but also hampers color fidelity and ontrast 
of the scene [1]. Haze, fog and even underwater 
scattering are such phenomena, whose degradation effect on 
the resulting images grows with scene depth [2]. This 
degradation is due to dual factors: (i) the irradiance L(x) 
emitted from scene points is attenuated due to scattering 
caused by haze particles along the line of sight, and (ii) 
ambient airlight A is also scattered by haze particles, causing 
some of it to be reflected into the line of sight and reach the 
camera. The resulting image H(x) exhibits reduced contrast 
and distorted colors, and is typically modeled [4, 5, 6] by: 
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there are also some networks designed to jointly predict the 
transmittance and the airlight [15] [16]. Since these methods 
are still limited to the dehazing model, when the parameters of 
the model are not accurately predicted, the removal 
performance is reduced. And for nonuniform weather 
conditions, they often fail to estimate the haze accurately, 
which in turn affects the subsequent dehazing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To tackle this issue, different prior information has to be 
considered into the optimization framework such as dark 
channel prior [17], contrast color-lines [18]] and hazeline prior 
[19]. For example, based on the observation that there always 
exists one channel that is significant dark in the captured 
outdoor images, dark-channel prior [17] is leveraged in the 
optimization framework to guarantee dehazed images are 
“dark channel”. Motivated by this observation, we propose to 
use the internal patch recurrence property as a strong prior for 
single-image blind dehazing. Small image patches (e.g., 5x5, 
7x7) tend to repeat abundantly inside a single natural image, 
both within the same scale, as well as across different scales of 
the image. Then we derive an optimal transmission map under 
a locally constant assumption. To improve the estimation for 
white/black areas in a scene, we further include a transmission 
heuristic and formulate the image dehazing as solving the 
optimal transmission map under the transmission heuristic 
constraint. Finally Multi-scale Optimal Fusion (MOF) model 
is computed to fuse pixel-wise and patch-wise transmission 
maps optimally to avoid misestimated transmission region. 

This MOF is then embedded into patch-wise dehazing to 
suppress halo artifacts. Still, we perform post-processing 
methods to improve robustness and reduce computational 
complexity of the MOF using IRCNN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The rest of the paper is organized as follows. Section 2 gives 
the overall methodology of our proposed algorithm along with 
block diagram of implementation. In Section 3, the details of 
the proposed Airlight estimation using internal patch 
recurrence are presented. In section 4, Optimal transmission 
map estimation steps are explained. In Section 5, MOF model 
are presented, including TME region recognition, multi-scale 
transmission map estimation. A post-processing is presented 
along with MOF. In Section 6, the experimental metrics shows 
that the superior performance of the proposed. Section 7 holds 
the conclusion of entire system. 
 

II. SYSTEM DESCRIPTION 

 
The following is the methodology to remove haze from video.  
1) Input the video  
2) Extract the sequence of frames from the video  
3) Process each frame as follows  
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Figure 1. Block Diagram of Proposed System 
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4) Estimate the atmospheric light  
5) Estimate the optimal transmission map  
6) Compute the Refine Transmission map of multi scale  
7) Perform the MOF for these two maps  
8) Recover the scene radiance  
9) Go to step 4 until the entire sequence of frames are 
processed  
10) Combine dehazed frames into video  
11) Output the video. 

 
 The complete block diagram of implementation is 
illustrated in Fig. 1. For every video to be process, we divide 
the videos into number of frames. Frames are nothing but the 
data structure of images which is captured on corresponding 
frame duration. So, this data structure is again converted to 
image format of matrix dimension with their resolution. After 
this, airlight estimation using internal patch recurrence is 
performed for any one of the extracted frame image. To 
reduce the time computation in the system we are performing 
the airlight estimation only for one frame that may be any of 
the video. Once this atmospheric light is computed, we are 
estimated the optimal transmission map using transmission 
heuristic procedure. For the same frame we calculated the 
number of transmission maps with different number of scales 
using DCP. These both the results are applied into MOF and 
obtained the combined and refined transmission map. 
Radiance image from refined transmission map is estimated to 
get the dehazed frame output. Finally we can combine all 
frames and get dehazed video output. 

 

III. BLIND AIRLIGHT ESTIMATION  

 
 Nevertheless, degradation is not limited to blur; other types 
of degradations in the imaging process may also lead to 
diminished patch recurrence. Deviations from the ideal patch 
recurrence encode valuable information about the unknown 
degradation process, in general. In particular, images taken 
under bad weather conditions (haze, fog, etc.) suffer from 
diminished patch recurrence. Recurring patches at different 
depths undergo different amounts of haze, hence no longer 
look the same (e.g., see the patches P1 and P2 in Fig. 2). 
Nevertheless, these differences between such “co-occurring 
patches” (patches with high normalized correlation) allow 
recovery of their shared airlight color AL and their relative 
transmission parameters. Combining the information from a 
sparse set of co-occurring pairs of patches in the image, yields 
the global airlight color AL [20]. 
 

 
 

Figure 2. Co-Occuring Patches of image 
The algorithm of airlight estimation used in our proposed 
system is explained as below. 
 
Algorithm 1: Airlight estimation using internal patch 
recurrence 
Input : Haze Frame H(x) 
Output: Airlight AL 
Step 1: Co-Occuring pairs prediction  

i. High variance patches extraction from image 
H(x) 

ii. Matching patches searching with high 
normalized correlation using equ [4]. 

Step 2: Pairwise haze parameter for each pair  
i. Relative t-values of pair T2/T1 using equ [5] 
ii. Shared airlight ALk between P1 and P2 by equ 

[6] 

Step 3: Global airlight estimate from all pariwise ALk using 
equ [7] 
 
 
Let P1[x] and P2[x] denote a pair of small co-occurring 
patches (7x7) that originate from the same underlying haze-
free patch L[x]. According to equ [1], 
 

𝑃1[𝑥] = 𝐿(𝑥)𝑇1 + 𝐴𝐿1(1 − 𝑇1)                                                       
 𝑃2[𝑥] = 𝐿(𝑥)𝑇2 + 𝐴𝐿2(1 − 𝑇2)                        [3] 

 
 
For haze-free image, the patches P1 and P2 should be 
identical. However, due to the haze and their different depths, 
they look quite different as in Fig. 2. The concealing effect of 
the airlight AL is removed in the mean-free patches 𝑃1̂ and 
𝑃2̂. However, their different transmissions still obscure their 
similarity. Therefore, we normalize the standard deviation of 
each patch, in the case of l2 norm.  
 

𝑃̃1[𝑥]

∥ 𝑃̃1 ∥
=

𝑇1𝐿̃[𝑥]

𝑇1 ∥ 𝐿̃ ∥
=

𝐻̃[𝑥]

∥ 𝐻 ∥
 

[4] 
𝑃̃2[𝑥]

∥ 𝑃̃2 ∥
=

𝑇2𝐻[𝑥]

𝑇2𝐻 ∥
=

𝐻[𝑥]

∥ 𝐻 ∥
 

 
𝑃̃1

∥ 𝑃̃1 ∥
  =   

𝑃̃2

∥ 𝑃̃2 ∥
                                    [5] 

 
Thus, normalizing the mean-free version of all hazy image 
patches unveils their recurrence property. Pairs of co-
occurring patches can now be detected by applying Nearest-
Neighbors (NN) search on the normalized patches. Since our 
final goal is to recover a haze-free image with maximal patch 
recurrence across multiple scales, we search for normalized-
NNs (co-occurring patches) across multiple scales of the input 
hazy image. Note that scaling down the hazy image does not 
change the physical parameters of the scene (the airlight at 
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infinity, the depth of scene points, or the haze scattering 
parameters); it only has a zoom-out effect. We apply NN-
search only to patches which have high std (above 25 
grayscale levels). Relative transmission parameter T1/T2 is 
the ratio between the transmission parameters of two co-
occurring patches, P1 and P2. Recall that T1 and T2 are 
scalars (between 0 and 1). Thus it reduces to a simple ratio of 
their standard-deviations. 
 

𝑇2

𝑇1

=
𝑠𝑡𝑑(𝑃2)

𝑠𝑡𝑑(𝑃1)
                                       [6] 

 
The shared airlight can be estimated using least squares as, 
 

𝐴𝐿 =
(𝑃̃2 − 𝑃̃1)

𝑇
[𝑃1 ° 𝑃2 − 𝑃2 ° 𝑃̃1]

∥ (𝑃̃2 − 𝑃̃1) ∥2
                [7] 

 
where o denotes the element-wise vector multiplication (also 
known as the Hadamard product). Note that our recovery of 
the airlight AL does not require having scene points at infinity 
in the image. 
 
The single global airlight estimate 𝐴𝐿̂ for the entire image 
could in principle be computed as the average. Patch pairs of 
different depths are having high information than the similar 
depth patches. So, global airlight is estimated using weighted 
average as below, 
 

𝐴𝐿̂ =
∑ 𝜑𝑘𝐴𝐿̂𝑘𝑘

∑ 𝜑𝑘𝑘

                                   [8] 

 
giving higher weights 𝜑𝑘 to more informative pairs of patches. 
Informative pairs should have a very large pairwise t-ratio       

( 
T1

𝑇2
≫ 1). The weight of each pair can be derived as below 

 

𝜑𝑘 = [(𝑇𝐹𝐵1
− 𝑇𝐹𝐵2

) (
𝑇𝐹𝐵1

𝑇𝐹𝐵2

− 1)]

2

                [9] 

 
This accomplishes the weighting effect, where TFB is defined 
as, 

𝑇(𝑥) ≥ max
𝑐∈𝑅,𝐺,𝐵

{1 −
𝐻𝑐(𝑥)

𝐴𝐿𝑐

}  ≜ 𝑇𝐹𝐵(𝑥)           [10] 

 
We perform the iteration until the rate of change in 𝐴𝐿̂ is very 
small which shows that this iterative weighting minimizes the 
estimation error by 25%. 
 

IV. OPTIMAL TRANSMISSION MAP 

 
 To improve the estimation for white/black areas in a scene, 
we further include a transmission heuristic and formulate the 
image dehazing as solving the optimal transmission map under 
the transmission heuristic constraint [21]. The algorithm of 
transmission map estimation is as follows. 
 

 
Algorithm 2: Optimal Transmission Map using Heuristics 

Input : Haze Frame H(i), Airlight AL 

Output: Optimal Transmission Map T 

1. Obtain T from AL of algorithm 1. 

2. Calculation of γ from equ [12] 

3. Optimal γ computing using equ [14] 

4. Objective function heuristic for using equ [18] 

5. Quadratic programming for optimal T map using equ [19] 

 

Our goal is to approximate the two unknowns: the 
transmission T(x) and the haze-free image L(x). Rewriting equ 
[1] as, 
 

𝑇(𝑥, 𝑦) =
1

𝐹(𝑥, 𝑦) − 𝐴𝐿
𝐻(𝑥, 𝑦) +

−𝐴𝐿

𝐹(𝑥, 𝑦) − 𝐴𝐿
          

= 𝛾(𝑥, 𝑦)[𝐻(𝑥, 𝑦) − 𝐴𝐿]                            [11] 
Where, 
 

𝛾(𝑥, 𝑦) =
1

𝐹(𝑥, 𝑦) − 𝐴𝐿
                           [12] 

 
Thus, for each pixel i in a local window w, we have a constant 
γ: 
 

𝑇𝑖 ≈ 𝛾𝑐[𝐻𝑖
𝑐 − 𝐴𝐿𝑐], ∀𝑐∈ (𝑟, 𝑔, 𝑏)             [13] 

 
Where, c denotes the color channel. Under the locally constant 
assumption, our goal becomes to find T and γ by minimizing 
the following cost function, 
 

𝐶(𝑇, 𝛾) = ∑ ∥ 𝑌𝑘𝛾𝑘 − 𝑀𝑇̅𝑘 ∥2

𝑘

                 [14] 

 
Where, 

𝛾𝑘 = [𝛾𝑘
𝑟 , 𝛾𝑘

𝑔
, 𝛾𝑘

𝑏]
𝑇
                              [15] 

 
 
Yk  is defined as 3x3 matrix as, 
  

𝑌𝑘 =

[
 
 
 
 
 
𝑇𝑟   
 𝑇𝑔  
  𝑇𝑏

𝜀   
 𝜀  
  𝜀]

 
 
 
 
 

                                 [16] 

 
where Tc is a |wk|×1 vector containing in each entry for all i ϵ 

wk, ε is a regularization parameter for γ and M is a 3(|wk 
|+1)×(| wk |+1) matrix defined by: 
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𝑀 =

[
 
 
 
𝐻|𝑤𝑘|×|𝑤𝑘| 0

𝐻|𝑤𝑘|×|𝑤𝑘| ⋮

𝐻|𝑤𝑘|×|𝑤𝑘| ⋮

       0            0]
 
 
 

                        [17] 

Similarly, after first deriving the optimal γc , we obtain the 
final objective function: 
 

𝐶(𝑇) = ∑𝑇̅𝑘
𝑇𝐴𝐿̅̅̅̅

𝑘
𝑇𝐴𝐿̅̅̅̅

𝐾𝑇̅𝐾 = 𝑇𝑇⋃ 𝑇

𝑘

                   [18] 

Where, 

𝐴𝐿̅̅̅̅
𝑘 = 𝑀 − 𝑌𝑘((𝑌𝑘

𝑇𝑌𝑘))
−1

𝑌𝑘
𝑇𝑀                        [19] 

 
The transmission value of this object should be larger than the 
transmission heuristic because the object is closer to the 
camera than the background. Given an image, we first detect 
the horizontal line and then determine the transmission 
heuristic for the ground area according to its vertical distance 
from the horizon. The transmission heuristic for the sky area 
(i.e. above the horizon) is all set to 0. Moreover, we add a 
smoothness term on T so that the transmission of a certain 
object should be nearly constant. By including the above 
constraints, we finally obtain a constrained quadratic equation, 
which can be optimized by quadratic programming and have a 
global optimum solution: 
 

𝐶(𝑇) = 𝑇𝑇 ∪ 𝑇 + 𝜉 ∥ ∇T ∥2                         [20] 

𝑠. 𝑡. 𝑚𝑎𝑥 (ℎ𝑗 ,
𝐴𝐿 − 𝐸𝑗

𝐴𝐿
) ≤ 𝑇𝑗 ≤ 1, ∀𝑗 ∈ 𝐸 

 
where, hj is the transmission heuristic of the jth pixel, and ξ is 

a factor to control the effect of smoothness term. The upper 
bound of α is set as 1 to satisfy the exponential function.  
 

V. MULTI SCALE OPTIMAL FUSION OF TRANSMISSION MAP 

 
Pixel-wise transmission map estimation method is free of halo 
artifacts. However, it always overestimates haze intensity 
beyond its actual value, which leads to over-saturated haze 
removal image although the patch-wise dehazing could refrain 
from over-saturation, it may result in halo artifacts.  Multi-
scale Optimal Fusion (MOF) model to fuse pixel-wise and 
patch-wise transmission maps optimally to avoid misestimated 
transmission region. This MOF is then embedded into patch-
wise dehazing to suppress halo artifacts [22]. 
 
As discussed above, patch-wise dehazing would result in halo 
artifacts around the edge with abrupt grayscale change, 
namely TME region. So pixel-wise instead of patch-wise 
dehazing is expected in TME region. For this purpose, the 
ideal transmission map Tmof is computed by, 
 

𝑇𝑚𝑜𝑓(𝑥) = 𝜒𝑡𝑚𝑒(𝑥). 𝑇𝑝𝑖(𝑥) + 𝜒𝑡𝑚𝑒̅̅ ̅̅ ̅̅ (𝑥). 𝑇𝑝𝑎(𝑥)        [21] 
 
where 𝑇𝑝𝑖 and 𝑇𝑝𝑎 represent transmission maps of pixel-wise 
and patch wise, 𝜒𝑡𝑚𝑒  and 𝜒𝑡𝑚𝑒̅̅ ̅̅ ̅̅  give the weights for combining 
𝑇𝑝𝑖 and 𝑇𝑝𝑎. 
 

To get an ideal transmission map, we should minimize the 
difference between 𝑇𝑚𝑜𝑓(𝑥) and 𝑇𝑝𝑖(𝒙) inside the TME 
region, and minimize the difference between 𝑇𝑚𝑜𝑓(𝑥) and 
𝑇𝑝𝑎(𝑥) outside the TME region, i.e. 

𝜒𝑡𝑚𝑒̅̅ ̅̅ ̅̅ (𝑥) ≈ 0 𝑎𝑛𝑑 𝜒𝑡𝑚𝑒(𝑥) ≈ 1, 𝑥 ∈ 𝑇𝑀𝐸  
𝜒𝑡𝑚𝑒̅̅ ̅̅ ̅̅ (𝑥) ≈ 1 𝑎𝑛𝑑 𝜒𝑡𝑚𝑒(𝑥) ≈ 0, 𝑥 ∉ 𝑇𝑀𝐸            [22] 

 
 
TME region can be roughly extracted by following method: 
 

𝐵𝑡 = 𝑚𝑎𝑥[(1 − Ω𝐷𝑝𝑎) − (1 − Ω𝐷𝑝𝑖), 0]            [23] 

 
Where, Ω is application-based constant used to adaptively 
keep more haze for the distant objects [23], 𝐷𝑝𝑖 and 𝐷𝑝𝑎 are 
the dark channels calculated by pixel-wise and patch-wise 
estimations, respectively. 
 
Patch wise transmission map is computed from DCP and pixel 
wise transmission map is computed using optimal 
transmission map of algorithm 2. Texture smoothing and 
contrast enhancement of each patch is carried out using 
Gaussian filtering and tanh functions respectively.  we finally 

obtain the 𝜒𝑡𝑚𝑒  = Bf and 𝜒𝑡𝑚𝑒̅̅ ̅̅ ̅̅ = 1 −Bf , respectively. 

 
 
To do this, we first estimate the T𝑝𝑎j for different patch size 

pj (𝑗 = 1, 2,…β). The choice of pj depends on image resolution 

that 
 

𝑝𝑗 = ⌊2𝑗 . log(𝑤 × ℎ)⌋ − 1, 𝑗 = 1,2,3… . . 𝛽         [24] 
 
where ⌊⋅⌋ is a rounded down function, and 𝑤 and h are the 
width and height of the input image, respectively. 𝛽 is the 
number of scales. Then, according to ideal transmission map 
fusion [22] , 
 

𝑇𝑚𝑜𝑓(𝑥) =
𝐵𝑓(𝑥). 𝑇𝑝𝑖(𝑥) + (1 − 𝐵𝑓(𝑥)) . 𝑇𝑝𝑎(𝑥) + 𝜆𝑡

𝐵𝑓
2(𝑥) + (1 − 𝐵𝑓(𝑥))

2

+ 𝜆𝑡

    [25] 

Different scales of transmission map (𝑇𝑚𝑜𝑓
𝑗 ) are calculated 

from equ [25]. Finally, all these transmission maps are fused 
together to give a multi-scale transmission map through 
 

𝑇𝑚𝑜𝑓 = ∑𝑣𝑗𝑇𝑚𝑜𝑓
𝑗

,

𝛽

𝑗

  𝑗 = 1,2,3… . . 𝛽              [26] 

 
where 𝑇𝑚𝑜𝑓  is the fused transmission map, 𝒗𝑗 is the weight for 
the 𝑗th scale, conforming to Σ𝛽𝑗 𝒗𝑗 = 1, which is defined by, 
 

𝑣𝑗 =
𝑒𝜌|𝑝(𝛽 − 𝑗 + 1) − 1|

∑ 𝑒𝜌 .|𝑞(𝑖)−1|𝛽
𝑖

 , 𝑗 = 1,2,3… . 𝛽         [27] 

 
where q𝑗 is the patch size of the 𝑗th scale, ρ is the proportional 
control factor. The larger ρ indicates more uneven of the 
weights. For suppressing textures in a transmission map, a fast 
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GD-GIF is further imposed on the output of MOF refined     
T-map. 
 
The flow of MOF model is illustrated in below fig. 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Post Processing 

 
 

The image after haze removal looks so dark that image details 
cannot be seen clearly. This is because transmission map of 
the MOF is always less than patch-wise. To address this 
problem, the dehazed image is further adjusted by an adaptive 
exposure scaling [24]. For effective dehazing process, we 
included the IRCNN based denoising for enhanced frame 
result[25]. 
 

VI. PERFORMANCE ANALYSIS 

 

To evaluate the proposed MOBliF method, we are considered 
the multiple test videos in the condition of low haze, medium 
haze and high haze.  Natural haze videos are tested and even 
synthetic haze video is evaluated. To illustrate the adaptive 
performance of our system we checked for underwater video  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
also in this evaluation. Videos which we considered are 
having different resolution and frame duration. Recent three 
existing methods are taken for comparison with our method 
named as Non-local Video Dehazing [26], Multi Scale CNN 
[27], MLP dehazing [28]. We are estimated the qualitative and 
quantitative metrics for performance analysis. 

 

 

Haze Frame Atmospheric 
Light –
Algorithm 1 

Pixel wise Optimal 
Transmission Map –
Algorithm 2 

Patch wise   T- 
Map    scale 5 
– DCP 

Single Scale 
Optimal 
Fusion_SOF1 

Single Scale 
Optimal 
Fusion_ SOF2 

Single Scale 
Optimal 
Fusion_ SOF3 

Multi Scale 
Optimal 
Fusion_ MOF1 

Multi Scale 
Optimal 
Fusion_ MOF2 

MOF refined 
T-map 

GD-GIF 
smoothing  

Dehazing 
Frame 

Postprocessing 
by IRCNN 

Patch wise   T- 
Map    scale 
11– DCP 

Patch wise   T- 
Map    scale 
17– DCP 

Figure 3.Entire Work flow of our proposed MOBliF 
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Figure 4. Haze Frame 

 
Fig 4 shows the input frame which we considered for the 
processing of dehazing. For sample we depicts the results of 
only frame for all steps of implementation MOBliF algorithm. 
 
In fig. 5., (a),(b),(c), we shown the transmission maps 
computed in our algorithm. The Transmission map 
optimization places the major role in the dehazing process. In 
our method we used two different transmission map 
estimation. 
 
One from the optimal transmission heuristic based Map 
estimation to detect the adaptive transmission content in frame 
which is illustrated in Fig5.(a). 

 

 
(a) Optimal Transmission Map 

 
 

 
(b) DCP transmission Map of Scale 5 

 
 

 
(c) DCP transmission Map of Scale 11 

 
Figure 5. Transmission Maps of Optimal and Multi Scale 

DCP 
 
 
Another Transmission Maps are called as Multi scale 
transmission maps. To produce these maps we taken the scales 
for patch size. In our evaluation we are taken patch size as 
5,11,17. As patch size getting increase the zooming effect of 
transmission map computation will increase. For example we 
depicts the two different scales of 5 and 11 based transmission 

map which derived from DCP algorithm in fig. 5-b) and 5-c) 
respectively. From these figures we can noticed that fig.5-b) 
transmission map is somewhat better resolution than 5-c). 
According to these qualitative results we can conclude that 
with small patch size, we will get high resolution transmission 
maps. 
 

                           
        a) Optimal Map                     b) MOF refined Map 
 

Figure 6. Refinement of Transmission Map by optimal 
MOF 

 
Fig. 6. Shows how the optimal map and multi scale 
transmission maps are fused to produce the effective 
transmission map for attain quality of dehazed image. 
 

(a)                                                 (b) 
 

Figure 7.(a) Haze Frame  (b) Dehaze Frame of our 
proposed MOBliF 

 
 
Figure 4, illustrates the qualitative result of dehazing frame 
output from our proposed algorithm. 
 
For quantitative analysis of the proposed algorithm and 
existing methods we are considered performance metrics 
which are calculated between haze free frame and dehazed 
frame. The parameters we are taken for the experiment 
evaluations are as below 
 

• PSNR 
• MSE 
• SSIM 
• Computation time 
• Haze Level 
• Haze Intensity 
• Contrast-to-Noise Ratio 
• Gain of Visibility level 
• SSEQ 
• UQI 
• BAQI  
• CEIQ 
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Table 1, shows the measures which are derived from proposed 
dehazed output and existing outputs. Each metric decides the 
efficiency of the system for video dehazing. 
 

 
 
 
 

Methods PSNR 
(dB) 

MSE SSIM Time 
(sec) 

Haze 
Level(%)  

Haze 
Intensity 

CNR Gain 
Visibility 

SSEQ UQI BAQI CEIQ 

Non-
Local[26] 
 

17.96 1042.13 0.75 0.25 35.35 90.14 1 11.37 26.54 142.73 0.01 3.32 

MSCNN 
[27] 
 

19.51 730.95 0.89 0.34 62.20 158.60 1 8.11 16.95 152.20 0.01 3.16 

MLP 
[28] 
 

17 1335.58 0.83 0.45 33.91 86.47 1.05 17.61 16.59 158.19 0.01 3.01 

Proposed 
MOBliF 
 

22.2 0.03 0.95 0.46 66.43 169.39 1.89 87.87 28.62 159.43 0.11 3.44 

 
 
 

VII. CONCLUSION 

 
This paper proposed the new efficient video dehazing 
framework using optimized multi scale fusion along with 
effective airlight estimation. The traditional dehazing method 
was enhanced in order to make the dehazing process fast while 
maintaining a dehazing quality. For this purpose, the airlight 
estimation is performed based on blind internal patch 
recurrence and transmission maps are fused by Multi Scale 
Fusion of pixel wise transmission map and patch wise 
transmission maps. Pixel wise transmission map is obtained 
from optimal heuristic transmission map which overcome the 
oversaturation and halo artifact effects in the dehazing of the 
video frame. In order to further improve the quality of the 
output we used IRCNN to restore the frame from any of the 
distortion and noises. Experiments were conducted on 
multiple datasets (synthetic and real) and the results were 
compared against several recent methods. Significance of the 
proposed system implementation is measure and proven that 
our results achieved the best performance.  For future 
applications, we can try to reduce the time complexity by 
using digital signal processing hardware unit integration to 
compactly connect with real time scenarios.  
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