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Abstract- The key objective of this paper is to provide an idea for VLSI Implementation of RLS 

algorithm for Noise Cancellation with real time analog inputs.  In this paper, we present an efficient 

architecture for the implementation of ANC systems often for high-speed digital signal processors to 

cancel out disturbing noise. The throughput rate of the proposed design is significantly increased by 

recursive update and concurrent implementation of filtering and weight-update operations. The 

conventional LMS inner-product computation is replaced by conditional signed recursive accumulation 

in order to reduce the sampling period and area complexity. The proposed implementation significantly 

outperforms the existing implementations in terms of three important key metrics. 1. The least mean 

squares (LMS) algorithms adjust the filter coefficients to minimize the cost function. Compared to  least 

mean squares (LMS) algorithms, the RLS algorithms achieve faster convergence by variable step size. 2. 

Proposed RLS algorithms require fewer computational resources and memory than the RLS algorithms. 

3. The implementation of the algorithms is less complicated due to lesser tap approach than the all other 

existing algorithms. Through MATLAB simulation experiments efficiency of RLS over LMS will be 

proved. The VLSI implementation results show that the proposed algorithm as superior performance in 

Fast convergence rate, low complexity, and has superior performance in noise cancellation. 

Keywords- Active noise cancellation(ANC), least mean square (LMS) ,recursive lease square(RLS) 

 

I. INTRODUCTION 

The Least Mean Square (LMS) algorithm is 

introduced by Hoff in 1960.In diverse fields of 

engineering Least Mean Square algorithm is used 

because of its simplicity. It has been used in 

many fields such as adaptive noise cancellation, 

adaptive equalization, side lobe reduction in 

matched filters, system identification etc. By 

using simple architecture for the implementation 

of variant Block   LMS algorithm in which 

weight updation and error calculation are both  

 

 

calculated in block wise, Hardware outputs are 

verified with simulations from FPGA. For the 

computation efficiency of the LMS algorithm 

some additional simplification are necessary in 

some application. There are many approaches to 

decrease the computational requirements of LMS 

algorithm that is block LMS algorithm [1]. In 

Block LMS algorithm technique involves 

calculation of a block of finite set of output 

values from block of input values. Efficient 

http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_algorithms/#categorize
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_rls_algorithms/
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_rls_algorithms/
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_choose_algorithm/
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parallel processors can be used in block 

implementations of digital filters which results in 

speed gains [1]. LMS is one of the adaptive 

filtering algorithms derived from steepest descent 

algorithm used in wide variety of applications. 

Block LMS is one of the variants in which the 

weights are updated once per every block of data 

instead of updating on every clock cycle of input 

data.   

II. ALGORITHM FORMULATION 

      In [1], the adaptation step size is adjusted 

using the energy of the instantaneous error. The 

weight update recursion is given by 

          (1) 

and  the step-size update expression is 

                         (2) 

   The constant umax is normally selected near the 

point of instability of the conventional LMS to 

provide the maximum possible convergence 

speed. The value of is chosen as a compromise 

between the desired level of steady state 

misadjustment and the required tracking 

capabilities of the algorithm. The parameter 

controls the convergence time as well as the level 

of misadjustment of the algorithm. The algorithm 

has preferable performance over the fixed step-

size LMS: At early stages of adaptation, the error 

is large, causing the step size to increase, thus 

providing faster convergence speed. When the 

error decreases, the step size decreases, thus 

yielding smaller misadjustment near the 

optimum. However, using the instantaneous error 

energy as a measure to sense the state of the 

adaptation process does not perform as well as 

expected in the presence of measurement noise. 

This can be seen from (3). The output error of the 

identification system is 

 

                         (3) 

where the desired signal d(n) is given by, 

 

                     (4) 

 

A. NORMALISED LEAST MEAN 

SQUARE (NLMS) ALGORITHM 

To derive the NLMS algorithm we consider the 

standard LMS recursion, for which we select a 

variable step size parameter,  This 

parameter is selected so that the error value, 

e
+

(n), will be minimized using the updated 

filter tap weights, w(n+1), and the current input 

vector, x(n).  

                     

Next we minimize (e
+

(n))
2
, with respect to  (n). 

Using this we can then find a value for  (n) 

which forces e
+

 (n) to zero.  

 
This  (n) is then substituted into the standard 

LMS recursion replacing , resulting in the 

following. 

 

 
Fig 1.Adoptive filter structure 
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      Often the NLMS algorithm is expressed as 

equation 5.20; this is a slight modification of 

the standard NLMS algorithm detailed above. 

Here the value of  is a small positive constant in 

order to avoid division by zero when the values 

of the input vector are zero.. The parameter  is 

a constant step size value used to alter the 

convergence rate of the NLMS algorithm, it is 

within the range of 0< <2, usually being equal 

to 1.  

 
Fig 2 .Coefficient path estimation 

w (n + 1) = w(n) + e(n)*x(n)   .  

  

A. FPGA Realization Issues 

     To Field programmable gate arrays are ideally 

suited for the implementation of adaptive filters. 

However, there are several issues that need to be 

addressed. When performing software simulations of  

Adaptive filters, calculations are normally carried 

out with floating point precision. Unfortunately,                                

 The resources required of an FPGA to perform 

floating point arithmetic is normally too large to  be  

 justified, and measures must  be taken to account 

for this. Another concern is the filter tap itself. 

Numerous techniques have  been devised to 

efficiently calculate the convolution operation 

when the filters coefficients are fixed in advance. 

For an adaptive filter whose coefficients change  

over time, these methods will not work or need to 

 be modified significantly. 

     

 

 Fig.3 Design of Transversal Filters 

 

III. IMPLEMENTATION 

  LMS algorithm mainly consists of two basic 

process   

 Filtering process   

 Adaptive process   

Filtering process: 

• In filtering process FIR filter output is 
calculated by convolving inputs and tap weights.   

• Estimation error is calculated by comparing the  
output with desired signal.  

Adaptive process  

• In adaptive process tap weights are updated 
based  

on the estimation error. 

Three Steps Involved  

• Calculation of filter output.   

• Estimation of error.   
• Tap weight up-dation.  

A. LMS adaptive filter : Basic Concepts: 

        In this algorithm filter weights are updated 

with each new sample as required to meet the 

desired output.  The computation required for 

weights update is illustrated by equation (1). If 

the input values u(n),u(n - 1),u(n - 2)....u(n - N + 

1) form the tap   input vector u(n), where N 

denotes the filter length,  and  the weights 

w^0(n)……w^N-1(n) form the tap  weight vector 
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w(n) at iteration n, then the LMS algorithm is 

given by the following equations:  

y(n)= w^h(n)*u(n)  

e(n)= d(n)-y(n)  

w^(n+1)=w^(n)+M*u(n)*e(n)                           (1)  

 

   where y(n) denotes the filter output. d(n)  

denotes the desired output. e(n) denotes the filter  

error (the difference between the desired filter 

output  and current filter output) which is used to 

update the  tap weights. M denotes a learning 

rate, and W^(n+1)  denotes the new weight vector 

that will be used by  the next iteration. 

B. Variable Step Size 

 

Where g is a vector comprised of the gradient 

terms, gi(n)=e(n)x(n-i), i=0…N-1, the length 

corresponds to the order of the adaptive filter. 

The values for  (n) can be calculated in 

either of the methods expressed in equation 

3.26. The choice is dependent on the 

application, if a digital signal processor is 

used then the second equation is preferred. 

However, if a custom chip is designed then 

the first equation is usually utilized. For both 

the Matlab and real time applications the first 

equation is being implemented. Here  is a 

small positive constant optionally used to 

control the effect of the gradient terms on the 

update procedure, in the later 

implementations this is set to 1 

 
In order to ensure the step size parameters do not 

become too large (resulting in instability), or too 

small (resulting in slow reaction to changes in the 

desired impulse response), the allowable values 

for each element in the step size are bounded by 

upper and lower values. 

C. Resource usage in implementation 

         Here the architecture is designed to perform 

in real time implementation. In input buffering 

RAMS the continuous incoming data is stored 

that provide the calculations involved until for the 

weight updating. From each of the input RAM 

blocks the data is read out alternatively and 

passed in to input data memory. In tap weight 

memory block tap weights are initially stored. 

Both weights and input data’s are passed to the 

multiplier simultaneously for multiplication 

which multiplies both weight vector and data 

vector. This result is passed to adder which adds 

the output of the multiplier. Then the adder output 

is equivalent to the FIR filter output,(which  

ideally requires N multipliers depending on the  

number of taps which here is reduced to one) is 

then  subtracted from another input sample to 

calculate the  error. 

To calculate the weight updates the obtained   

error value is multiplied with data vector and step 

size to reduce the error from each calculation. 

Then updated weights are added to previous 

weights and written back to weight memory. 

Then updated weights are ready for another data 

set. As mentioned earlier ideally FIR filter 

structure requires N multiplier depending on the 

number of weights considered for 

implementation. Here multiplier used is reduced 

to one so architecture presented consumes 

minimum hardware which is convenient for 

FPGA implementation.  
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Fig 4. Filter weight updates using VSS-LMS 

 

 
Fig 5. MSE graph in  VSS-LMS 

IV. DISTORTION ANALYSIS 

Normalized least mean square algorithm 

generates less mean square error rate when 

compared to the variable step size least mean 

square algorithm and least mean square 

algorithm. The NLMS algorithm, an equally 

simple, but more robust variant of the LMS 

algorithm, exhibits a better balance between 

simplicity and performance than the LMS 

algorithm. Finally we carried out hardware 

implementation of NLMS and the design was 

initially verified with Modelsim simulator tool 

and we successfully synthesize the verilog HDL 

code with QUARTUS II EDA tool. Due to its 

good characteristics the NLMS has been largely 

used in real-time applications. 

 

 
Fig 6. Simulated output 
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Fig 7. RTL schematic output 

 

 
Fig 8. Area summary 
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Fig 8 . Fmax  report. 

Table II Hardware complexity report 

comparison using cyclone III family devices  

 
V.   CONCLUSION 

 Here FPGA-based implementation of both 

least mean square and recursive approach has 

been tested for realizing the loss compensation 

filter for a number of audiograms and coupled 

with noise attenuation filters. Magnitude 

responses of these filters, measured using swept 

sinusoidal tone as input, showed close match with 

the corresponding desired magnitude responses. 

And finally an area-and power-efficiency of RLC  

ANC circuit over LMS has been proved  for low 

power  in-ear headphones. The proposed design 

has been synthesized successfully using 

QUARTUS II EDA tool. 
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