

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2018IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 15th

JUN 2018. Link :

http://www.ijiemr.org/main/index.php?vol=Volume-07&issue=ISSUE-02

Title: PRIVACY PRESERVING AUCTION FOR BIG DATA TRENDING USING HOMOMORPHIC

ENCRYPTION

Volume 07, Issue 06, Pages: 145–154.

Paper Authors

VANAM SRAVAN DR. RASHMI AGAEWAL

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 145

PRIVACY PRESERVING AUCTION FOR BIG DATA TRENDING

USING HOMOMORPHIC ENCRYPTION
1
VANAM SRAVAN

2
DR. RASHMI AGAEWAL

1
Reasearch Scholar, Madhav University, Rajasthan. India

2
Accosiate Professor, Madhav University, Rajasthan. India

ABSTRACT

Privacy is one of the most important properties of an information system must satisfy, in which

systems the need to share information among different, not trusted entities, the protection of

sensible information has a relevant role. Thus privacy is becoming an increasingly important

issue in many data mining applications. For that privacy secure distributed computation, which

was done as part of a larger body of research in the theory of cryptography, has achieved

remarkable results. These results were shown using generic constructions that can be applied to

any function that has an efficient representation as a circuit. A relatively new trend shows that

classical access control techniques are not sufficient to guarantee privacy when data mining

techniques are used in a malicious way. Privacy preserving data mining algorithms have been

recently introduced with the aim of preventing the discovery of sensible information. In this

paper we will describe the implementation of cryptography in that data mining for

privacy preserving.

KEYWORDS

Privacy preserving, Cryptography, Distributed Data Mining, Security.

1. INTRODUCTION

Privacy preserving data mining is an

important property that any mining system

must satisfy. So far, if we assumed that the

information in each database found in

mining can be freely shared. Consider a

scenario in which two or more parties

owning confidential databases wish to run a

data mining algorithm on the union of their

databases without revealing any unnecessary

information. For example, consider separate

medical institutions that wish to conduct a

joint research while preserving the privacy

of their patients. In this scenario it is

required to protect privileged information,

but it is also required to enable its use for

research or for other purposes. In particular,

although the parties realize that combining

their data has some mutual benefit, none of

them is willing to reveal its database to any

other party.The common definition of

privacy in the cryptographic community

limits the information that is leaked by the

distributed computation to be the

information that can be learned from the

designated output of the computation.

Although there are several variants of the

definition of privacy, for the purpose of this

discussion we use the definition that

compares the result of the actual

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 146

computation to that of an “ideal”

computation: Consider first a party that is

involved in the actual computation of a

function (e.g. a data mining algorithm).

Consider also an “ideal scenario”, where in

addition to the original parties there is also a

“trusted party” who does not deviate from

the behavior that we prescribe for him, and

does not attempt to cheat. In the ideal

scenario all parties send their inputs to the

trusted party, who then computes the

function and sends the appropriate results to

the other parties. Loosely speaking, a

protocol is secure if anything that an

adversary can learn in the actual world it can

also learn in the ideal world, namely from its

own input and from the output it receives

from the trusted party. In International

Journal of Database Management Systems (

IJDMS) Vol.2, No.3, August 2010 58

essence, this means that the protocol that is

run in order to compute the f unction does

not leak any “unnecessary” information.

2. PRIVACY PRESERVING

Explosive progress in networking, storage

and processor technologies has led to the

creation of ultra large database that record

unprecedented amount of transactional

information. Privacy issues are further

exacerbated now that the World Wide Web

makes it easy for the new data to be

automatically collected and added to

databases. Privacy preserving protocols are

designed in order to preserve privacy even

in the presence of adversarial participants

that attempt to gather information about the

inputs of their peers. There are, however,

different levels of adversarial behavior.

Cryptographic research typically considers

two types of adversaries: A semi-honest

adversary (also known as a passive, or

honest but curious adversary) is a party that

correctly follows the protocol specification,

yet attempts to learn additional information

by analyzing the messages received during

the protocol execution. On the other hand, a

malicious adversary may arbitrarily deviate

from the protocol specification. (For

example, consider a step in the protocol

where one of the parties is required to

choose a random number and broadcast it. If

the party is semi-honest then we can assume

that this number is indeed random. On the

other hand, if the party is malicious, then he

might choose the number in a sophisticated

way that enables him to gain additional

information.) It is of course easier to design

a solution that is secure against semi-honest

adversaries, than it is to design a solution for

malicious adversaries. A common approach

is therefore to first design a secure protocol

for the semi-honest case, and then transform

it into a protocol that is secure against

malicious adversaries. This transformation

can be done by requiring each party to use

zero-knowledge proofs to prove that each

step that it is taking follows the specification

of the protocol. More efficient

transformations are often required, since this

generic approach might be rather inefficient

and add considerable overhead to each step

of the protocol. We remark that the semi-

honest adversarial model is often a realistic

one. This is because deviating from a

specified program which may be buried in a

complex application is a non-trivial task,

and because a semi-honest adversarial

behavior can model a scenario in which the

parties that participate in the protocol are

honest, but following the protocol execution

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 147

an adversary may obtain a transcript of the

protocol execution by breaking into a

machine used by one of the participants.

3. PRIVACY PRESERVING

COMPUTATION

In this section we will describe the various

computation techniques which we are using

for data.

3.1 Classification

Alice has a private database D1 and Bob has

private database D2. How can Alice and

Bob build a decision tree based on D1ı D2
without disclosing the contents of their

private database to each other? Several

algorithms like ID3, Gain Ratio, Gini Index

and many other can be used for Decision

Tree.

3.2 Data Clustering

Alice has a private database D1 and Bob has

private database D2. Alice and Bob want to

jointly perform data clustering on D1ı D2.
This is primarily based on data clustering

principle that tries to increase intra class

similarity and minimize interclass similarity.

3.3 Mining Association Rules Let Alice has

a private database D1 and Bob has private

database D2. If Alice and Bob wish to

jointly find the association rules from D1ı
D2 without revealing the information from

individual databases.

3.4 Data Generalization, Summarization

and Characterization

Let Alice has a private database D1 and Bob

has private database D2. If they wish to

jointly perform data generalization,

summarization or characterization on their

combined database D1ı D2, then this
problem becomes an Secure Multiparty

Communication problem.

3.5 Profile Matching

Alice has a database of hacker’s profile. Bob

has recently traced a behavior of a person,

whom he suspects a hacker. Now, if Bob

wants to check whether his doubt is correct,

he needs to check Alice’s database. Alice’s

database needs to be protected because it

contains hacker’s related sensitive

information. Therefore, when Bob enters the

hacker’s behavior and searches the Alice’s

database, he can’t view his whole database,

but instead, only gets the comparison results

of the matching behavior.

3.6 Fraud Detection

Two major financial organizations want to

cooperate in preventing fraudulent intrusions

into their computing system, without sharing

their data patterns, since their individual

private database contains sensitive data.

4. SECURE COMPUTATION AND

PRIVACY PRESERVING DATA

MINING

There are two distinct problems that arise in

the setting of privacy-preserving data

mining. The first is to decide which

functions can be safely computed, where

safety means that the privacy of individuals

is preserved. For example, is it safe to

compute a decision tree on confidential data

in an organization and publicize the

resulting tree? For the most part, we will

assume that the result of the data mining

algorithm is either safe or deemed essential.

Thus, the question becomes how to compute

the results while minimizing the damage to

privacy. For example, it is always possible

to pool all of the data in one place and run

the data mining algorithm on the pooled

data. However, this is exactly what we don't

want to. Thus, the question we address is

how to compute the results without pooling

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 148

the data, and in a way that reveals nothing

but the final results of the data mining

computation. This question of privacy-

preserving data mining is actually a special

case of a long-studied problem in

cryptography called secure multiparty

computation. This problem deals with a

setting where a set of parties with private

inputs wish to jointly compute some

function of their inputs. Loosely speaking,

this joint computation should have the

property that the parties learn the correct

output and nothing else, even if some of the

parties maliciously collude to obtain more

information. Clearly, a protocol that

provides this guarantee can be used to solve

privacy-preserving data mining problems of

the type discussed above.

5. CRYPTOGRAPHY: OBLIVIOUS

TRANSFER

We describe here results of a body of

cryptographic research that shows how

separate parties can jointly compute any

function of their inputs, without revealing

any other information. As we argued above,

these results achieve maximal privacy that

hides all information except for the

designated output of the function. This body

of research attempts to model the world in a

way which is both realistic and general.

While there are some aspects of the “real

world” that are not modeled by this research,

the privacy guarantees and the generality of

the results are quite remarkable.

Oblivious transfer is a basic protocol that is

the main building block of secure

computation. It might seem strange at first,

but its role in secure computation should

become clear later. (In fact, it was shown by

Kilian [11] that oblivious transfer is

sufficient for secure computation in the

sense that given an implementation of

oblivious transfer, and no other

cryptographic primitive, one could construct

any secure computation protocol.)

Oblivious transfer is often the most

computationally intensive operation of

secure protocols, and is repeated many

times. Each invocation of oblivious transfer

typically requires a constant number of

invocations of trapdoor permutations (i.e.

public-key operations, or exponentiations).

It is possible to reduce the amortized

overhead of oblivious transfer to one

exponentiations per a logarithmic number of

oblivious transfers, even for the case of

malicious adversaries [15].

The problem of “oblivious polynomial

evaluation” (OPE) involves a sender and a

receiver. The sender’s input is a polynomial

Q of degree k over some finite field ƒ and
the receiver’s input is an element z _ ƒ (the

degree k of Q is public). The protocol is

such that the receiver obtains Q (z) without

learning anything else about the polynomial

Q, and the sender learns nothing. That is, the

problem considered is the private

computation of the function (Q, z)

(z)). This problem was introduced in [14],

where an efficient solution was also

presented. The overhead of that protocol is

O (k) exponentiations (using methods

suggested in [15]). (Note that this protocol

maintains privacy in the face of a malicious

adversary. In the semi-honest case a simpler

OPE protocol can be designed based on any

homomorphic encryption scheme, with an

overhead of O (k) computation and O(k | ƒ |
) communication.)

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 149

The main motivation for using OPE is to

utilize the fact that the output of a k degree

polynomial is (k + 1)-wise independent.

Another motivation is that polynomials can

be used for approximating functions that are

defined over the Real numbers.

6. THE TWO-PARTY CASE

Yao’s two-party protocol is pretty efficient,

as long as the size of the inputs, and the size

of the circuit computing the function, are

reasonable. In fact, for many functions the

efficiency of Yao’s generic protocol is

comparable to that of protocols that are

targeted for computing the specific function.

We describe here a distributed scenario of

computing the ID3 algorithm, where Yao’s

protocol is obviously too costly. On the

other hand, a specialized protocol can be

designed for computing this algorithm,

which uses Yao’s protocol as a primitive.

We are interested in a scenario involving

two parties, each one of them holding a

database of different transactions, where all

the transactions have the same set of

attributes (this scenario is also denoted as a

“horizontally partitioned” database). The

parties wish to compute a decision tree by

applying the ID3 algorithm to the union of

their databases.A naive approach for

implementing a privacy preserving solution

is to apply the generic Yao protocol to the

ID3 algorithm. This approach encounters

two major obstacles. First, the size of the

databases is typically very large. As each

transaction can have many attributes, and

there might be millions of transactions, the

encoding of each party’s input might require

hundreds of millions of bits. This means that

the computational overhead of running an

oblivious transfer per input bit might be very

high.Most cryptographic protocols,

however, compute functions over finite

fields. Even if the circuit computes an

approximation to the logarithm, this

computation involves evaluating

polynomials and therefore requires

computing multiplications and

exponentiations. An additional problem is

that running ID3 involves many rounds. The

part of the circuit computing the ith round

depends on the results of the previous i−1
rounds. A naïve implementation could

require an encoding of many copies of this

step, each one of them corresponding to a

specific result of the previous rounds. A key

observation is that each node of the tree can

be computed separately, with the output

made public, before continuing to the next

node. In general, private protocols have the

property that intermediate values remain

hidden. However, in the case of ID3 some of

these intermediate values (specifically, the

assignments of attributes to nodes) are

actually part of the output and may therefore

be revealed. Once the attribute of a given

node has been found, both parties can

separately partition their remaining

transactions accordingly for the coming

recursive calls. This means that private

distributed ID3 can be reduced to privately

finding the attribute with the highest

information gain. (This is a slightly

simplified argument as the other steps of

ID3 must also be carefully dealt with.

However, the main issues arise within this

step.) The overhead of the protocol

described above involves:

transfer protocol for every input wire of the

circuit that is associated with Bob's input,

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 150

in the size of the circuit,

nstant number of

cipher texts for every gate of the circuit (this

is the cost incurred in evaluating the gates).

The computation overhead is dominated by

the oblivious transfer stage, since the

evaluation of the gates uses symmetric

encryption which is very efficient compared

to oblivious transfers that require modular

exponentiations (this holds for small

circuits; if the circuit is large then the circuit

computation may begin to dominate). The

computation overhead is therefore roughly

linear in the length of Bob's input. The

number of rounds of the protocol is constant.

(namely, the variant described here has two

rounds using the two-round oblivious

transfer protocols of [5, 6, 15]).The

communication overhead is linear in the size

of the circuit. (The variant of the protocol

described in [22], which provides security

against malicious adversaries, requires

sending s copies of the circuit in order to

limit the probability of cheating to be

exponentially small in s. See also [17] for a

different variant, which provides security

against malicious adversaries at the cost of

applying public key operations for every

gate.) A major factor dominating the

overhead is, therefore, the size of the circuit

representation of f. There are many

functions for which we do not know how to

create linear size circuits (e.g. functions

computing multiplications or

exponentiations, or functions that use

indirect addressing). However, there are

many other functions, notably those

involving additions and comparisons, which

can be computed by linear size circuits. The

size of the input should also be reasonable.

For example, we cannot expect that two

parties, each of them holding a database

with millions of entries, could run the

protocol for computing a function whose

inputs are the entire databases.

7. THE MULTI-PARTY CASE

The multi-party case involves three or more

parties that wish to compute some function

of theirinputs without leaking any

unnecessary information. In the multi-party

scenario, there are protocols that enable the

parties to compute any joint function of their

inputs without revealing any other

information about the inputs. That is,

compute the function while attaining the

same privacy as in the ideal model. This was

shown to be possible in principle by

Goldreich, Micali and Wigderson [10], Ben-

Or, Goldwasser and Wigderson [3], and by

Chaum, Crepau and Damgard [4], for

different scenarios. These constructions, too,

are based on representing the computed

function as a circuit and evaluating it. The

constructions do have, however, some

additional drawbacks, compared to the two-

party case:

overhead of the protocol is linear in the size

of the circuit, and the number of

communication rounds depends on the depth

of the circuit1, unlike the two-party case

where the number of rounds is constant.

Furthermore, the protocol that is run for

every gate of the circuit is more complex

than the computation of a gate in the two-

party case, especially in the malicious party

scenario, and requires public-key operations

(although the overhead is still polynomial).

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 151

-party protocols require each

pair of parties to exchange messages (in

order to compute each gate of the circuit).

The required communication graph is,

therefore, a complete graph, whereas a

sparse communication graph could have

been sufficient if no security was required.

In many applications, for example

applications run between a web server and

many clients, it is impossible to require all

pairs of parties to communicate.

urity of the multi-party protocols

is assured as long as there is no corrupt

coalition of more than one half or one third

of the parties (depending on the scenario). In

many situations, however, it is impossible to

ensure that the number of corrupt parties is

smaller than such a threshold (for example,

consider a web application in which anyone

can register and participate, and which,

therefore, enables an adversary to register

any number of corrupt participants). In such

cases the security of the protocol is not

guaranteed.

Compared to the two-party case, however, it

is harder to apply the generic constructions

to actual scenarios. To illustrate this point

we consider the case of running a secure

computation for computing the result of an

auction, where there is an obvious

motivation for privacy and security, and also

certain restrictions on the operation of the

parties. The auction application, discussed in

[16], is not related to data mining, but it

does exemplify some of the difficulties of

the multiparty case. The discussion below

applies for any function that can be

computed by a circuit of reasonable size.

The auction scenario is that of a “sealed bid”

auction, and consists of an auctioneer and

many bidders. Each bidder submits a single

secret bid (i.e. the bid is sealed in an

envelope). There is a known decision rule,

whose inputs are the submitted bids, and

whose output is the identity of the winning

bidder and the amount that this bidder has to

pay. For example, in an “English auction”

the winning bidder is the bidder who offered

the highest bid, and he has to pay the

amount of his bid. In the second-price, or

Vickrey, type of auction (which has some

nice properties that are outside the scope of

this paper) the winner is the highest bidder

and he has to pay the amount of the second

highest bid. Bidding is allowed until some

point in time, and at that stage the decision

rule is applied to the submitted bids.

In the physical world bids are submitted in

sealed envelopes that are kept secure until

the end of the bidding period, and are then

opened by the auctioneer. In the virtual

world we would like to keep the bids secret

during the bidding period, but we could also

attempt to hide all information afterwards,

except for the identity of the winning party

and the amount he has to pay. For example,

in the case of a Vickrey auction the

auctioneer’s output could be limited to the

identity of the highest bidder (but not the

value of his bid), and the value of the second

highest bid (but not the identity of the

second highest bidder). This is more privacy

than can be achieved in the physical world.

(In fact, some of the suggested explanations

for the unpopularity of second price auctions

are based on possible attacks that a

malicious auctioneer can mount if he learns

the bid value of the highest bidder. This

phenomenon is inevitable in the

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 152

real world, but can be avoided if a privacy

preserving protocol is used to compute the

result of the auction.)

Privacy preserving multi-party computation

can be reduced to the two-party case.

Namely, it is possible to use the generic

two-party protocol to compute a function in

the multiparty scenario. Such a reduction is

described in [16]. Before describing the

highlights of the reduction we first describe

the advantages of this approach.

7.1 Trust

In order to use the two-party construction it

is assumed that there are two special parties,

and privacy is preserved as long as these two

parties do not collude. Namely, a collusion

of any number of parties (even a majority of

the parties) that does not include both

special parties does not affect the privacy

and security of the protocol. Protocols with

this security assurance might seem weaker

than protocols that are secure against

collusions of say, any coalition of less than

one half of the parties. After all, there is a

coalition of just two parties – the two special

parties, is able to break the security of the

system. Consider however a scenario where

most of the parties are users (e.g. bidders)

that have not established trust relationships

between themselves, and there are one or

more central parties that are more

established. For example, in the auction

scenario we can assume that the two special

parties are the auctioneer and another party

which we denote as the “issuer”, and which

can be, for example, an accounting firm. We

know that an

adversary can register many fake bidders in

order to control a majority of the

participating parties. It seems harder,

though, for the adversary to be able to

control insiders of both special parties, i.e. in

the auctioneer’s organization and in the

accounting firm.

7.2 Independence of Inputs

Corrupted parties must choose their inputs

independently of the honest parties' inputs.

This property is crucial in a sealed auction,

where bids are kept secret and parties must

fix their bids independently of others. We

note that independence of inputs is not

implied by privacy. For example, it may be

possible to generate a higher bid, without

knowing the value of the original one. Such

an attack can actually be carried out on some

encryption schemes.

7.3 Communication

We can design the reduction such that each

of the “simple” participating parties should

only communicate with one of the special

parties (e.g. the auctioneer), and should only

send a single message to this party. This

property greatly simplifies the required

communication infrastructure, and enables

to run the protocol without requiring all

parties to be online at the same time (in fact,

compared to a protocol that provides no

security at all, the only new communication

channel that is introduced by the secure

protocol is the channel between the two

special parties). When all the “simple”

parties finish sending their messages, the

two special parties run a short protocol to

complete the computation of the function.

7.4 Privacy

No party should learn anything more than its

prescribed output. In particular, the only

information that should be learned about

other parties' inputs is what can be derived

from the output itself. For example, in an

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 153

auction where the only bid revealed is that

of the highest bidder, it is clearly possible to

derive that all other bids were lower than the

winning bid.

However, this should be the only

information revealed about the losing bids.

7.5 Correctness

Each party is guaranteed that the output that

it receives is correct. To continue with the

example of an auction, this implies that the

party with the highest bid is guaranteed to

win, and no party including the auctioneer

can alter this.

7.6 Efficiency

The protocol evaluates a circuit

representation of the function. The overhead

per gate and per input bit is as in the two-

party construction, and is lower than in the

multi-party constructions.

7.7 Guaranteed Output Delivery

Corrupted parties should not be able to

prevent honest parties from receiving their

output. In other words, the adversary should

not be able to disrupt the computation by

carrying out a “denial of service” attack.

7.8 Fairness

Corrupted parties should receive their

outputs if and only if the honest parties also

receive their outputs. The scenario where a

corrupted party obtains output and an honest

party does not should not be allowed to

occur. This property can be crucial, for

example, in the case of contract signing.

Specifically, it would be very problematic if

the corrupted party received the signed

contract and the honest party did not.

The protocol is run with the two special

parties taking the roles of the two parties in

the two-party case. The issuer prepares a

circuit for computing the function. This

circuit might have many inputs of different

parties – for example, the inputs might be

the bids of the different bidders. The issuer

encodes the circuit as in the two-party case,

by choosing garbled values for the wires and

preparing tables for every gate. The other

special party (the auctioneer) is responsible

for computing the result of the circuit. In

order to do that it should receive the tables

that were prepared by the issuer, and one

garbled value for every input wire, namely

the value that corresponds to the input bit

associated with that wire. Once it receives

the garbled values of all input wires it can

compute the output of the circuit.

Given the proxy oblivious transfer protocol,

the rest of the implementation is simple.

Each bidder engages in a proxy oblivious

transfer for each of its input bits. The input

of the bidder to this protocol is the value of

the input bit. The sender is the issuer, and its

two inputs are the two garbled values that

are associated with the corresponding input

wire. The receiver is the auctioneer, and it

learns the garbled value that corresponds to

the input bit. This protocol consists of a

single message that is sent from the bidder

to the auctioneer, and then a round of

communication between the auctioneer and

the issuer. The auctioneer can actually wait

until it receives messages from all the

bidders before it runs the round of

communication with the issuer in parallel for

all input bits. The main computational

overhead of the protocol is incurred by the

proxy oblivious transfers, and is the same as

in the two-party case – a proxy oblivious

transfer must be executed for every input

wire. Estimates in [16] show that this

method can be used to securely implement

Vol 07 Issue06, Jun 2018 ISSN 2456 – 5083 Page 154

Vickrey auctions that involve hundreds of

bidders.

8. CONCLUSIONS

Cryptographic protocols for secure

computation achieved remarkable results: it

was shown that generic constructions can be

used to compute any function securely and it

was also demonstrated that some functions

can be computed even more efficiently using

specialized constructions. Still, a secure

protocol for computing a certain function

will always be more costly than a naive

protocol that does not provide any security.

By making use of cryptographic techniques

to store sensitive data and providing access

to the stored data based on an individual’s

role, we ensure that the data is safe from

privacy breaches. This paper was intended

to demonstrate basic ideas from a large body

of cryptographic research on secure

distributed computation, and their

applications to data mining. We described in

brief the definitions of security, and the

generic constructions for the two-party and

multi-party scenarios. We showed that it is

easier to design an implementation based on

the constructions for the two-party case than

it is to design one based on the multi-party

constructions. The main parameter that

affects the feasibility of implementing a

secure protocol based on the generic

constructions is the size of the best

combinatorial circuit that computes the

function that is evaluated. We believe that

further research in this area is crucial for the

development of secure and efficient

protocols in this field.

REFERENCES

[1] D. Beaver, S. Micali and P. Rogaway,

The round complexity of secure protocols,

Proc. of 22
nd

 ACM Symposium on Theory

of Computing (STOC), pp. 503-513, 1990.

[2] M. Bellare and S. Micali, Non-

Interactive Oblivious Transfer and

Applications, Advances in Cryptology -

CRYPTO ’89. Lecture Notes in Computer

Science, Vol. 435, Springer-Verlag, 1997,

pp. 547-557.

[3] M. Ben-Or, S. Goldwasser and A.

Wigderson, Completeness theorems for non

cryptographic fault tolerant distributed

computation, Proceedings of the 20th

Annual Symposium on the Theory of

Computing (STOC), ACM, 1988, pp. 1–9.

[4] D. Chaum, C. Crepeau and I. Damgard,

Multiparty unconditionally secure protocols,

Proceedings of the 20th Annual Symposium

on the Theory of Computing (STOC), ACM,

1988, pp. 11–19.

[5] S. Even, O. Goldreich and A. Lempel. A

Randomized Protocol for Signing Contracts.

Communications of the ACM, 28(6):637-

647, 1985.

[6] O. Goldreich. Foundations of

Cryptography: Volume 2 { Basic

Applications. Cambridge University Press,

2004

