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ABSTRACT 

Privacy is one of the most important properties of an information system must satisfy, in which 

systems the need to share information among different, not trusted entities, the protection of 

sensible information has a relevant role. Thus privacy is becoming an increasingly important 

issue in many data mining applications. For that privacy secure distributed computation, which 

was done as part of a larger body of research in the theory of cryptography, has achieved 

remarkable results. These results were shown using generic constructions that can be applied to 

any function that has an efficient representation as a circuit. A relatively new trend shows that 

classical access control techniques are not sufficient to guarantee privacy when data mining 

techniques are used in a malicious way. Privacy preserving data mining algorithms have been 

recently introduced with the aim of preventing the discovery of sensible information. In this 

paper we will describe the implementation of cryptography in that data mining for 

privacy preserving. 
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1. INTRODUCTION 

Privacy preserving data mining is an 

important property that any mining system 

must satisfy. So far, if we assumed that the 

information in each database found in 

mining can be freely shared. Consider a 

scenario in which two or more parties 

owning confidential databases wish to run a 

data mining algorithm on the union of their 

databases without revealing any unnecessary 

information. For example, consider separate 

medical institutions that wish to conduct a 

joint research while preserving the privacy 

of their patients. In this scenario it is 

required to protect privileged information, 

but it is also required to enable its use for 

research or for other purposes. In particular, 

although the parties realize that combining 

their data has some mutual benefit, none of 

them is willing to reveal its database to any 

other party.The common definition of 

privacy in the cryptographic community 

limits the information that is leaked by the 

distributed computation to be the 

information that can be learned from the 

designated output of the computation. 

Although there are several variants of the 

definition of privacy, for the purpose of this 

discussion we use the definition that 

compares the result of the actual 
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computation to that of an “ideal” 

computation: Consider first a party that is 

involved in the actual computation of a 

function (e.g. a data mining algorithm). 

Consider also an “ideal scenario”, where in 

addition to the original parties there is also a 

“trusted party” who does not deviate from 

the behavior that we prescribe for him, and 

does not attempt to cheat. In the ideal 

scenario all parties send their inputs to the 

trusted party, who then computes the 

function and sends the appropriate results to 

the other parties. Loosely speaking, a 

protocol is secure if anything that an 

adversary can learn in the actual world it can 

also learn in the ideal world, namely from its 

own input and from the output it receives 

from the trusted party. In International 

Journal of Database Management Systems ( 

IJDMS ) Vol.2, No.3, August 2010 58 

essence, this means that the protocol that is 

run in order to compute the f unction does 

not leak any “unnecessary” information. 

2. PRIVACY PRESERVING 

Explosive progress in networking, storage 

and processor technologies has led to the 

creation of ultra large database that record 

unprecedented amount of transactional 

information. Privacy issues are further 

exacerbated now that the World Wide Web 

makes it easy for the new data to be 

automatically collected and added to 

databases. Privacy preserving protocols are 

designed in order to preserve privacy even 

in the presence of adversarial participants 

that attempt to gather information about the 

inputs of their peers. There are, however, 

different levels of adversarial behavior. 

Cryptographic research typically considers 

two types of adversaries: A semi-honest 

adversary (also known as a passive, or 

honest but curious adversary) is a party that 

correctly follows the protocol specification, 

yet attempts to learn additional information 

by analyzing the messages received during 

the protocol execution. On the other hand, a 

malicious adversary may arbitrarily deviate 

from the protocol specification. (For 

example, consider a step in the protocol 

where one of the parties is required to 

choose a random number and broadcast it. If 

the party is semi-honest then we can assume 

that this number is indeed random. On the 

other hand, if the party is malicious, then he 

might choose the number in a sophisticated 

way that enables him to gain additional 

information.) It is of course easier to design 

a solution that is secure against semi-honest 

adversaries, than it is to design a solution for 

malicious adversaries. A common approach 

is therefore to first design a secure protocol 

for the semi-honest case, and then transform 

it into a protocol that is secure against 

malicious adversaries. This transformation 

can be done by requiring each party to use 

zero-knowledge proofs to prove that each 

step that it is taking follows the specification 

of the protocol. More efficient 

transformations are often required, since this 

generic approach might be rather inefficient 

and add considerable overhead to each step 

of the protocol. We remark that the semi-

honest adversarial model is often a realistic 

one. This is because deviating from a 

specified program which may be buried in a 

complex application is a non-trivial task, 

and because a semi-honest adversarial 

behavior can model a scenario in which the 

parties that participate in the protocol are 

honest, but following the protocol execution 
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an adversary may obtain a transcript of the 

protocol execution by breaking into a 

machine used by one of the participants.  

3. PRIVACY PRESERVING 

COMPUTATION 

In this section we will describe the various 

computation techniques which we are using 

for data. 

3.1 Classification 

Alice has a private database D1 and Bob has 

private database D2. How can Alice and 

Bob build a decision tree based on D1ı D2 
without disclosing the contents of their 

private database to each other? Several 

algorithms like ID3, Gain Ratio, Gini Index 

and many other can be used for Decision 

Tree.  

3.2 Data Clustering 

Alice has a private database D1 and Bob has 

private database D2. Alice and Bob want to 

jointly perform data clustering on D1ı D2. 
This is primarily based on data clustering 

principle that tries to increase intra class 

similarity and minimize interclass similarity. 

3.3 Mining Association Rules Let Alice has 

a private database D1 and Bob has private 

database D2. If Alice and Bob wish to 

jointly find the association rules from D1ı 
D2 without revealing the information from 

individual databases. 

3.4 Data Generalization, Summarization 

and Characterization 

Let Alice has a private database D1 and Bob 

has private database D2. If they wish to 

jointly perform data generalization, 

summarization or characterization on their 

combined database D1ı D2, then this 
problem becomes an Secure Multiparty 

Communication problem. 

3.5 Profile Matching 

Alice has a database of hacker’s profile. Bob 

has recently traced a behavior of a person, 

whom he suspects a hacker. Now, if Bob 

wants to check whether his doubt is correct, 

he needs to check Alice’s database. Alice’s 

database needs to be protected because it 

contains hacker’s related sensitive 

information. Therefore, when Bob enters the 

hacker’s behavior and searches the Alice’s 

database, he can’t view his whole database, 

but instead, only gets the comparison results 

of the matching behavior.  

3.6 Fraud Detection 

Two major financial organizations want to 

cooperate in preventing fraudulent intrusions 

into their computing system, without sharing 

their data patterns, since their individual 

private database contains sensitive data. 

4. SECURE COMPUTATION AND 

PRIVACY PRESERVING DATA 

MINING 

There are two distinct problems that arise in 

the setting of privacy-preserving data 

mining. The first is to decide which 

functions can be safely computed, where 

safety means that the privacy of individuals 

is preserved. For example, is it safe to 

compute a decision tree on confidential data 

in an organization and publicize the 

resulting tree? For the most part, we will 

assume that the result of the data mining 

algorithm is either safe or deemed essential.  

Thus, the question becomes how to compute 

the results while minimizing the damage to 

privacy. For example, it is always possible 

to pool all of the data in one place and run 

the data mining algorithm on the pooled 

data. However, this is exactly what we don't 

want to. Thus, the question we address is 

how to compute the results without pooling 
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the data, and in a way that reveals nothing 

but the final results of the data mining 

computation. This question of privacy-

preserving data mining is actually a special 

case of a long-studied problem in 

cryptography called secure multiparty 

computation. This problem deals with a 

setting where a set of parties with private 

inputs wish to jointly compute some 

function of their inputs. Loosely speaking, 

this joint computation should have the 

property that the parties learn the correct 

output and nothing else, even if some of the 

parties maliciously collude to obtain more 

information. Clearly, a protocol that 

provides this guarantee can be used to solve 

privacy-preserving data mining problems of 

the type discussed above. 

5. CRYPTOGRAPHY: OBLIVIOUS 

TRANSFER 

We describe here results of a body of 

cryptographic research that shows how 

separate parties can jointly compute any 

function of their inputs, without revealing 

any other information. As we argued above, 

these results achieve maximal privacy that 

hides all information except for the 

designated output of the function. This body 

of research attempts to model the world in a 

way which is both realistic and general. 

While there are some aspects of the “real 

world” that are not modeled by this research, 

the privacy guarantees and the generality of 

the results are quite remarkable. 

Oblivious transfer is a basic protocol that is 

the main building block of secure 

computation. It might seem strange at first, 

but its role in secure computation should 

become clear later. (In fact, it was shown by 

Kilian [11] that oblivious transfer is 

sufficient for secure computation in the 

sense that given an implementation of 

oblivious transfer, and no other 

cryptographic primitive, one could construct 

any secure computation protocol.)  

Oblivious transfer is often the most 

computationally intensive operation of 

secure protocols, and is repeated many 

times. Each invocation of oblivious transfer 

typically requires a constant number of 

invocations of trapdoor permutations (i.e. 

public-key operations, or exponentiations). 

It is possible to reduce the amortized 

overhead of oblivious transfer to one 

exponentiations per a logarithmic number of 

oblivious transfers, even for the case of 

malicious adversaries [15]. 

The problem of “oblivious polynomial 

evaluation” (OPE) involves a sender and a 

receiver. The sender’s input is a polynomial 

Q of degree k over some finite field ƒ and 
the receiver’s input is an element z _ ƒ (the 

degree k of Q is public). The protocol is 

such that the receiver obtains Q (z) without 

learning anything else about the polynomial 

Q, and the sender learns nothing. That is, the 

problem considered is the private 

computation of the function (Q, z)  

(z)). This problem was introduced in [14], 

where an efficient solution was also 

presented. The overhead of that protocol is 

O (k) exponentiations (using methods 

suggested in [15]). (Note that this protocol 

maintains privacy in the face of a malicious 

adversary. In the semi-honest case a simpler 

OPE protocol can be designed based on any 

homomorphic encryption scheme, with an 

overhead of O (k) computation and O( k | ƒ | 
) communication.) 
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The main motivation for using OPE is to 

utilize the fact that the output of a k degree 

polynomial is (k + 1)-wise independent. 

Another motivation is that polynomials can 

be used for approximating functions that are 

defined over the Real numbers.  

6. THE TWO-PARTY CASE 

Yao’s two-party protocol is pretty efficient, 

as long as the size of the inputs, and the size 

of the circuit computing the function, are 

reasonable. In fact, for many functions the 

efficiency of Yao’s generic protocol is 

comparable to that of protocols that are 

targeted for computing the specific function. 

We describe here a distributed scenario of 

computing the ID3 algorithm, where Yao’s 

protocol is obviously too costly. On the 

other hand, a specialized protocol can be 

designed for computing this algorithm, 

which uses Yao’s protocol as a primitive. 

We are interested in a scenario involving 

two parties, each one of them holding a 

database of different transactions, where all 

the transactions have the same set of 

attributes (this scenario is also denoted as a 

“horizontally partitioned” database). The 

parties wish to compute a decision tree by 

applying the ID3 algorithm to the union of 

their databases.A naive approach for 

implementing a privacy preserving solution 

is to apply the generic Yao protocol to the 

ID3 algorithm. This approach encounters 

two major obstacles. First, the size of the 

databases is typically very large. As each 

transaction can have many attributes, and 

there might be millions of transactions, the 

encoding of each party’s input might require 

hundreds of millions of bits. This means that 

the computational overhead of running an 

oblivious transfer per input bit might be very 

high.Most cryptographic protocols, 

however, compute functions over finite 

fields. Even if the circuit computes an 

approximation to the logarithm, this 

computation involves evaluating 

polynomials and therefore requires 

computing multiplications and 

exponentiations. An additional problem is 

that running ID3 involves many rounds. The 

part of the circuit computing the ith round 

depends on the results of the previous i−1 
rounds. A naïve implementation could 

require an encoding of many copies of this 

step, each one of them corresponding to a 

specific result of the previous rounds. A key 

observation is that each node of the tree can 

be computed separately, with the output 

made public, before continuing to the next 

node. In general, private protocols have the 

property that intermediate values remain 

hidden. However, in the case of ID3 some of 

these intermediate values (specifically, the 

assignments of attributes to nodes) are 

actually part of the output and may therefore 

be revealed. Once the attribute of a given 

node has been found, both parties can 

separately partition their remaining 

transactions accordingly for the coming 

recursive calls. This means that private 

distributed ID3 can be reduced to privately 

finding the attribute with the highest 

information gain. (This is a slightly 

simplified argument as the other steps of 

ID3 must also be carefully dealt with. 

However, the main issues arise within this 

step.) The overhead of the protocol 

described above involves:  

transfer protocol for every input wire of the 

circuit that is associated with Bob's input, 
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in the size of the circuit, 

nstant number of 

cipher texts for every gate of the circuit (this 

is the cost incurred in evaluating the gates). 

The computation overhead is dominated by 

the oblivious transfer stage, since the 

evaluation of the gates uses symmetric 

encryption which is very efficient compared 

to oblivious transfers that require modular 

exponentiations (this holds for small 

circuits; if the circuit is large then the circuit 

computation may begin to dominate). The 

computation overhead is therefore roughly 

linear in the length of Bob's input. The 

number of rounds of the protocol is constant. 

(namely, the variant described here has two 

rounds using the two-round oblivious 

transfer protocols of [5, 6, 15]).The 

communication overhead is linear in the size 

of the circuit. (The variant of the protocol 

described in [22], which provides security 

against malicious adversaries, requires 

sending s copies of the circuit in order to 

limit the probability of cheating to be 

exponentially small in s. See also [17] for a 

different variant, which provides security 

against malicious adversaries at the cost of 

applying public key operations for every 

gate.) A major factor dominating the 

overhead is, therefore, the size of the circuit 

representation of f. There are many 

functions for which we do not know how to 

create linear size circuits (e.g. functions 

computing multiplications or 

exponentiations, or functions that use 

indirect addressing). However, there are 

many other functions, notably those 

involving additions and comparisons, which 

can be computed by linear size circuits. The 

size of the input should also be reasonable. 

For example, we cannot expect that two 

parties, each of them holding a database 

with millions of entries, could run the 

protocol for computing a function whose 

inputs are the entire databases. 

7. THE MULTI-PARTY CASE 

The multi-party case involves three or more 

parties that wish to compute some function 

of theirinputs without leaking any 

unnecessary information. In the multi-party 

scenario, there are protocols that enable the 

parties to compute any joint function of their 

inputs without revealing any other 

information about the inputs. That is, 

compute the function while attaining the 

same privacy as in the ideal model. This was 

shown to be possible in principle by 

Goldreich, Micali and Wigderson [10], Ben-

Or, Goldwasser and Wigderson [3], and by 

Chaum, Crepau and Damgard [4], for 

different scenarios. These constructions, too, 

are based on representing the computed 

function as a circuit and evaluating it. The 

constructions do have, however, some 

additional drawbacks, compared to the two-

party case: 

overhead of the protocol is linear in the size 

of the circuit, and the number of 

communication rounds depends on the depth 

of the circuit1, unlike the two-party case 

where the number of rounds is constant.  

Furthermore, the protocol that is run for 

every gate of the circuit is more complex 

than the computation of a gate in the two-

party case, especially in the malicious party 

scenario, and requires public-key operations 

(although the overhead is still polynomial). 
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-party protocols require each 

pair of parties to exchange messages (in 

order to compute each gate of the circuit). 

The required communication graph is, 

therefore, a complete graph, whereas a 

sparse communication graph could have 

been sufficient if no security was required. 

In many applications, for example 

applications run between a web server and 

many clients, it is impossible to require all 

pairs of parties to communicate. 

urity of the multi-party protocols 

is assured as long as there is no corrupt 

coalition of more than one half or one third 

of the parties (depending on the scenario). In 

many situations, however, it is impossible to 

ensure that the number of corrupt parties is 

smaller than such a threshold (for example, 

consider a web application in which anyone 

can register and participate, and which, 

therefore, enables an adversary to register 

any number of corrupt participants). In such 

cases the security of the protocol is not 

guaranteed. 

Compared to the two-party case, however, it 

is harder to apply the generic constructions 

to actual scenarios. To illustrate this point 

we consider the case of running a secure 

computation for computing the result of an 

auction, where there is an obvious 

motivation for privacy and security, and also 

certain restrictions on the operation of the 

parties. The auction application, discussed in 

[16], is not related to data mining, but it 

does exemplify some of the difficulties of 

the multiparty case. The discussion below 

applies for any function that can be 

computed by a circuit of reasonable size. 

The auction scenario is that of a “sealed bid” 

auction, and consists of an auctioneer and 

many bidders. Each bidder submits a single 

secret bid (i.e. the bid is sealed in an 

envelope). There is a known decision rule, 

whose inputs are the submitted bids, and 

whose output is the identity of the winning 

bidder and the amount that this bidder has to 

pay. For example, in an “English auction” 

the winning bidder is the bidder who offered 

the highest bid, and he has to pay the 

amount of his bid. In the second-price, or 

Vickrey, type of auction (which has some 

nice properties that are outside the scope of 

this paper) the winner is the highest bidder 

and he has to pay the amount of the second 

highest bid. Bidding is allowed until some 

point in time, and at that stage the decision 

rule is applied to the submitted bids. 

In the physical world bids are submitted in 

sealed envelopes that are kept secure until 

the end of the bidding period, and are then 

opened by the auctioneer. In the virtual 

world we would like to keep the bids secret 

during the bidding period, but we could also 

attempt to hide all information afterwards, 

except for the identity of the winning party 

and the amount he has to pay. For example, 

in the case of a Vickrey auction the 

auctioneer’s output could be limited to the 

identity of the highest bidder (but not the 

value of his bid), and the value of the second 

highest bid (but not the identity of the 

second highest bidder). This is more privacy 

than can be achieved in the physical world. 

(In fact, some of the suggested explanations 

for the unpopularity of second price auctions 

are based on possible attacks that a 

malicious auctioneer can mount if he learns 

the bid value of the highest bidder. This 

phenomenon is inevitable in the 
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real world, but can be avoided if a privacy 

preserving protocol is used to compute the 

result of the auction.) 

Privacy preserving multi-party computation 

can be reduced to the two-party case. 

Namely, it is possible to use the generic 

two-party protocol to compute a function in 

the multiparty scenario. Such a reduction is 

described in [16]. Before describing the 

highlights of the reduction we first describe 

the advantages of this approach. 

7.1 Trust 

In order to use the two-party construction it 

is assumed that there are two special parties, 

and privacy is preserved as long as these two 

parties do not collude. Namely, a collusion 

of any number of parties (even a majority of 

the parties) that does not include both 

special parties does not affect the privacy 

and security of the protocol. Protocols with 

this security assurance might seem weaker 

than protocols that are secure against 

collusions of say, any coalition of less than 

one half of the parties. After all, there is a 

coalition of just two parties – the two special 

parties, is able to break the security of the 

system. Consider however a scenario where 

most of the parties are users (e.g. bidders) 

that have not established trust relationships 

between themselves, and there are one or 

more central parties that are more 

established. For example, in the auction 

scenario we can assume that the two special 

parties are the auctioneer and another party 

which we denote as the “issuer”, and which 

can be, for example, an accounting firm. We 

know that an 

adversary can register many fake bidders in 

order to control a majority of the 

participating parties. It seems harder, 

though, for the adversary to be able to 

control insiders of both special parties, i.e. in 

the auctioneer’s organization and in the 

accounting firm. 

7.2 Independence of Inputs 

Corrupted parties must choose their inputs 

independently of the honest parties' inputs. 

This property is crucial in a sealed auction, 

where bids are kept secret and parties must 

fix their bids independently of others. We 

note that independence of inputs is not 

implied by privacy. For example, it may be 

possible to generate a higher bid, without 

knowing the value of the original one. Such 

an attack can actually be carried out on some 

encryption schemes. 

7.3 Communication 

We can design the reduction such that each 

of the “simple” participating parties should 

only communicate with one of the special 

parties (e.g. the auctioneer), and should only 

send a single message to this party. This 

property greatly simplifies the required 

communication infrastructure, and enables 

to run the protocol without requiring all 

parties to be online at the same time (in fact, 

compared to a protocol that provides no 

security at all, the only new communication 

channel that is introduced by the secure 

protocol is the channel between the two 

special parties). When all the “simple” 

parties finish sending their messages, the 

two special parties run a short protocol to 

complete the computation of the function. 

7.4 Privacy 

No party should learn anything more than its 

prescribed output. In particular, the only 

information that should be learned about 

other parties' inputs is what can be derived 

from the output itself. For example, in an 
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auction where the only bid revealed is that 

of the highest bidder, it is clearly possible to 

derive that all other bids were lower than the 

winning bid. 

However, this should be the only 

information revealed about the losing bids. 

7.5 Correctness 

Each party is guaranteed that the output that 

it receives is correct. To continue with the 

example of an auction, this implies that the 

party with the highest bid is guaranteed to 

win, and no party including the auctioneer 

can alter this. 

7.6 Efficiency 

The protocol evaluates a circuit 

representation of the function. The overhead 

per gate and per input bit is as in the two-

party construction, and is lower than in the 

multi-party constructions.  

7.7 Guaranteed Output Delivery 

Corrupted parties should not be able to 

prevent honest parties from receiving their 

output. In other words, the adversary should 

not be able to disrupt the computation by 

carrying out a “denial of service” attack. 

7.8 Fairness 

Corrupted parties should receive their 

outputs if and only if the honest parties also 

receive their outputs. The scenario where a 

corrupted party obtains output and an honest 

party does not should not be allowed to 

occur. This property can be crucial, for 

example, in the case of contract signing. 

Specifically, it would be very problematic if 

the corrupted party received the signed 

contract and the honest party did not. 

The protocol is run with the two special 

parties taking the roles of the two parties in 

the two-party case. The issuer prepares a 

circuit for computing the function. This 

circuit might have many inputs of different 

parties – for example, the inputs might be 

the bids of the different bidders. The issuer 

encodes the circuit as in the two-party case, 

by choosing garbled values for the wires and 

preparing tables for every gate. The other 

special party (the auctioneer) is responsible 

for computing the result of the circuit. In 

order to do that it should receive the tables 

that were prepared by the issuer, and one 

garbled value for every input wire, namely 

the value that corresponds to the input bit 

associated with that wire. Once it receives 

the garbled values of all input wires it can 

compute the output of the circuit. 

Given the proxy oblivious transfer protocol, 

the rest of the implementation is simple. 

Each bidder engages in a proxy oblivious 

transfer for each of its input bits. The input 

of the bidder to this protocol is the value of 

the input bit. The sender is the issuer, and its 

two inputs are the two garbled values that 

are associated with the corresponding input 

wire. The receiver is the auctioneer, and it 

learns the garbled value that corresponds to 

the input bit. This protocol consists of a 

single message that is sent from the bidder 

to the auctioneer, and then a round of 

communication between the auctioneer and 

the issuer. The auctioneer can actually wait 

until it receives messages from all the 

bidders before it runs the round of 

communication with the issuer in parallel for 

all input bits. The main computational 

overhead of the protocol is incurred by the 

proxy oblivious transfers, and is the same as 

in the two-party case – a proxy oblivious 

transfer must be executed for every input 

wire. Estimates in [16] show that this 

method can be used to securely implement 



 

Vol 07 Issue06, Jun 2018                                  ISSN 2456 – 5083 Page 154 

 

Vickrey auctions that involve hundreds of 

bidders. 

8. CONCLUSIONS 

Cryptographic protocols for secure 

computation achieved remarkable results: it 

was shown that generic constructions can be 

used to compute any function securely and it 

was also demonstrated that some functions 

can be computed even more efficiently using 

specialized constructions. Still, a secure 

protocol for computing a certain function 

will always be more costly than a naive 

protocol that does not provide any security. 

By making use of cryptographic techniques 

to store sensitive data and providing access 

to the stored data based on an individual’s 

role, we ensure that the data is safe from 

privacy breaches. This paper was intended 

to demonstrate basic ideas from a large body 

of cryptographic research on secure 

distributed computation, and their 

applications to data mining. We described in 

brief the definitions of security, and the 

generic constructions for the two-party and 

multi-party scenarios. We showed that it is 

easier to design an implementation based on 

the constructions for the two-party case than 

it is to design one based on the multi-party 

constructions. The main parameter that 

affects the feasibility of implementing a 

secure protocol based on the generic 

constructions is the size of the best 

combinatorial circuit that computes the 

function that is evaluated. We believe that 

further research in this area is crucial for the 

development of secure and efficient 

protocols in this field. 
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