

A Peer Revieved Open Access International Journal

www.ijiemr.org

COPY RIGHT

2018IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors

IJIEMR Transactions, online available on 5th Dec 2018. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-07&issue=ISSUE-13

Title: MODELING AND CFD SIMULATION OF COMMERCIAL PLATE FIN HEAT EXCHANGER AT DIFFERENT FLOW CONDITIONS

Volume 07, Issue 13, Pages: 1–4.

Paper Authors

ESHLAVATH MALLESH, B RAMESH , Dr. SRIDHARA REDDY

Nishitha College of engineering, Hyderabad, T.S, India

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

www.ijiemr.org

MODELING AND CFD SIMULATION OF COMMERCIAL PLATE FIN HEAT EXCHANGER AT DIFFERENT FLOW CONDITIONS ESHLAVATH MALLESH¹, B RAMESH², Dr. SRIDHARA REDDY³

¹ P.G. Student, Dept of MECHANICAL, Nishitha College of engineering, Hyderabad, T.S, India.
² Assistant Professor, Dept of MECHANICAL, Nishitha College of engineering, Hyderabad, T.S, India.
³ Professor & HOD, Dept of MECHANICAL, Nishitha College of engineering, Hyderabad, T.S, India.

ABSTRACT: A plate-fin heat exchanger is a type of heat exchanger design that uses plates and finned chambers to transfer heat between fluids. It is often categorized as a compact heat exchanger to emphasise its relatively high heat transfer surface area to volume ratio. The plate-fin heat exchanger is widely used in many industries, including the aerospace industry for its compact size and lightweight properties, as well as in cryogenics where its ability to facilitate heat transfer with small temperature differences is utilized. In this thesis, a finite-element method is used for modeling the thermal analysis of plate fin heat exchanger. The temperature distribution and heat flux are evaluated at different materials (stainless steel, aluminum alloy and copper. Detailed analyses are performed to estimate the boundary conditions of heat exchanger. In this thesis, CREO parametric is employed for modeling and ANSYS is used for analysis of the plate fin heat exchanger. CFD analysis to determine the pressure drop, heat transfer coefficient, mass flow rate and heat transfer rate for two different models (straight and curved fins) at different flow conditions (laminar and turbulent).

KEY WORDS: commercial plate heat exchanger, CREO, CFD analysis

1. INTRODUCTION

EXCHANGERS: 1.1 HEAT Heat exchanger is a device that is used for transfer thermal energy from one liquid to another that are at different temperatures, while usually preventing them mixing each other. Heat exchangers are used in a wide variety of applications such as HVAC systems, food and chemical process systems, heat recovery systems. A plate-fin heat exchanger is a type of heat exchanger design that uses plates and finned chambers to transfer heat between fluids. It is often categorized as a compact heat exchanger to

emphasize its relatively high heat transfer surface area to volume ratio.

1.2 PLATE-FIN HEAT EXCHANGER: The plate-fin heat exchanger is widely used in many industries, including the aerospace industry for its compact size and lightweight properties, as well as in cryogenics where its ability to facilitate heat transfer with small temperature differences is utilized. Aluminum alloy plate fin heat exchangers, often referred to as Brazed Aluminum Heat Exchangers, have been used in the aircraft industry for more than 60 years and adopted

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

www.ijiemr.org

into the cryogenic air separation industry around the time of the second world war and shortly afterwards into cryogenic processes in chemical plants such as Natural Gas Processing

Principal Components of a Plate Fin Heat Exchanger: Heat is transferred from one stream through the fin interface to the separator plate and through the next set of fins into the adjacent fluid. The fins also serve to increase the structural integrity of the heat exchanger and allow it to withstand high pressures while providing an extended surface area for heat transfer. A high degree of flexibility is present in plate-fin heat exchanger design as they can operate with any combination of gas, liquid, and twophase fluids. Heat transfer between multiple process streams is also accommodated, with a variety of fin heights and types as different entry and exit points available for each stream.

2. LITERATURE SURVEY

2.1 Plate Fin and Tube Heat Exchangers

There have been several studies on plate fin and tube heat exchangers. Wang el al. (1999) conducted an experimental study on the air-side performance for two specific louver fin patterns and their plain plate fin counterparts. This study investigated the effects of fin pitch, longitudinal tube spacing and tube diameter on the air-side heat transfer performance and friction characteristics. It was found that the heat transfer performance increased with reduced fin pitch. Kim et al (1999) conducted an experimental study on heat exchangers having plain fins on a staggered array of circular tubes.

3. RELEATED STUDY

3.1 INTRODUCTION TO CREO: PTC CREO, in advance ask as Pro/ENGINEER, is three-D modeling groupware bundled software cause to bear in mechanical touching, cartoon, up, and in CAD drafting jobholder firms. It co act of one's eminent three-D CAD modeling battle so pre-owned a control-based parametric device. Using parameters, extent and capabilities to seize the posture of your brand, it may invigorate the development amplify in supplement to the mark itself. The prescribe present within comprehend in 2010 against Pro/ENGINEER Wildfire to CREO. It exchanges toward demon with by abject of the usage of one's creed who progressed it, Parametric Technology Company (PTC), at any start surrounding the unencumbered of its followers of geography crops the one in question establish plan whatever constitute of welding modeling, 2D orthographic frisk for vocational draft.

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

www.ijiemr.org

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

www.ijiemr.org

4. COMPARISON OF CFD RESULTS AT DIFFERENT FLOWS

Models	Type of	Pressure	Velocity	Heat	Mass flow	Heat
	flow	(Pa)	(m/s)	transfer	rate(kg/sec)	transfer
				coefficient		rate(w)
Straight	Laminar	8.14e+02	2.51	3.65e+03	11.254	33146.5
	Turbulent	8.23e+03	7.84	3.75+03	35.63426	1032348.9
Curved	Laminar	4.36e+11	8.71	1.66e+06	0.020971	582540.78
	Turbulent	2.97e+16	2.37e+01	3.71e+07	0.026951	8656727.43

5 COMPARISON OF THERMAL ANALYSIS RESULTS AT DIFFERENT MATERIALS

MODELS	MATERIALS	TEMPERATURE		HEAT FLUX	
		MIN	MAX		
STRAIGHT	STAINLESS STEEL	23.2	81.414	0.17353	
	ALUMINUM	44.909	80.37	0.55408	
	ALLOY				
	COPPER	59.197	80.167	0.69244	
CURVED	STAINLESS STEEL	82.471	82.471	0.97886	
	ALUMINUM	82.106	82.106	1.7047	
	ALLOY				
	COPPER	81.398	81.398	2.9474	

6. CONCLUSION

In this thesis, a finite-element method is used for modeling the thermal analysis of plate fin heat exchanger. The temperature distribution and heat flux are evaluated at different materials (stainless steel, aluminum alloy and copper. Detailed analyses are performed to estimate the boundary conditions of heat exchanger. In this thesis, CREO parametric is employed for modeling and ANSYS is used for analysis of the plate fin heat exchanger. By observing the CFD analysis results the pressure and heat transfer coefficient values are increases by increasing the Reloynd's number (turbulent flow condition) and mass flow rate and heat transfer rate values are more at turbulent flow condition with curved fin model. So it can be concluded that curved fin model at turbulent condition. By observing the thermal analysis results the more heat flux value for copper at curved model

7. REFERENCES

1. J. M. Cherrie, Factors Influencing Valve Temperatures in Passenger Car Engines, SAE Paper 650484, 1965.

2. R. P. Worthen and T. N. Tunnecliffe, Temperature Controlled Engine Valves, SAE Paper

820501, 1982

3. Z. Johan, A. C. M. Moraes, J. C. Buell, and R. M. Ferencz, In-Cylinder Cold Flow Simu-lation Using a Finite Element Method, Comput. Meth. Appl. Mech. Eng., vol. 190, pp. 3069–3080, 2001.

4. R. Prasad and N. K. Samria, Heat Transfer and Stress Fields in the Inlet and Exhaust Valves of a Semi-adiabatic Diesel Engine, Comput. Struct., vol. 34, no. 5, pp. 765–777,

1990.

5. R. Prasad and N. K. Samria, Transient Heat Transfer Studies on a Diesel Engine Valve, Int. J. Mech. Sci., vol. 33, no. 3, pp. 179–195, 1991.