

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2018IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 5th

Dec 2018. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-07&issue=ISSUE-12

Title: PERFORMANCE AND ANALYSIS OF 16-BIT, 32-BIT MULTIPLY-ACCUMULATE UNITS

USING VEDIC MULTIPLIER FOR DIGITAL SIGNAL PROCESSING

Volume 07, Issue 12, Pages: 946–954.

Paper Authors

MOPARTHI WILSANI ASHISH, P. NAGARAJU

KAKINADA INSTITUTE OF ENGINEERING & TECHNOLOGY-.KAKINADA

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 946

PERFORMANCE AND ANALYSIS OF 16-BIT, 32-BIT

MULTIPLY-ACCUMULATE UNITS USING VEDIC

MULTIPLIER FOR DIGITAL SIGNAL PROCESSING
1
MOPARTHI WILSANI ASHISH,

2
P. NAGARAJU

1
PG SCHOLAR,KAKINADA INSTITUTE OF ENGINEERING & TECHNOLOGY-.KAKINADA
2
ASSOCIATE PROFESSOR DEPT OF ECE. KAKINADA INSTITUTE OF ENGINEERING &

TECHNOLOGY-.KAKINADA
2
nagaraju.ece.jrg@gmail.com

ABSTRACT Most complex operations in digital signal processing involve a multiply-

accumulate operation. MAC Unit performs multiplication of two numbers and stores it

in a register. Almost every Processor has a MAC unit. MAC units are also used in FPGA

and Certain PLCs along with other processors. But MAC Unit is one of the slowest

modules present in the processors. So, there is a non-negotiable need for improving the

speed of MAC Unit, which apparently enhances the performance of the processor. This

thesis presents the implementation of low area, high speed Multiply-Accumulate Unit.

 The main objective of this project is Multiply and Accumulate (MAC) unit design using

Vedic multiplier, based onUrdhva-Tiryagbhyam Sutra. An efficient 16-bit, 32-bit

Multiply-Accumulate (MAC) architecture and performance results are presented in

comparison with Booth and Conventional multiplier architectures and also compared

with respect to different adders.The 32-bit Multiply and Accumulate (MAC) unit

reduces the area by reducing the number of multiplication and addition in the multiplier

unit. Increase in the speed of operation is achieved by the hierarchical nature of the

Vedic multiplier unit. The Multiply-Accumulate unit designed with Vedic multiplier and

Carry skip adder has less delay of 26.102 ns. The modules have been designed in

VHDL, simulated and synthesized using Xilinx 14.7.The efficiency in terms of device

utilization (area) and speed of 16-bit, 32-bit Multiply and Accumulate (MAC) unit

architecture is observed through reduced area, low critical delay and low hardware

complexity.

1. INTRODUCTION

1.1 MOTIVATION AND

OVERVIEW

The general Multiply-Accumulate

(MAC) architecture consists of a

conventional multiplier, adder and an

accumulator. Where the output is added

to the previous MAC output result by an

accumulate adder. The Multiply-

Accumulate (MAC) unit is extensively

used in microprocessors and digital

signal processors for data-intensive

applications, such as filtering,

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 947

convolution, and inner products. Most

digital signal processing methods use

nonlinear functions such as discrete

cosine transform (DCT) or discrete

wavelet transform (DWT) or FFT/IFFT

computations that can be efficiently

accelerated by dedicated MAC units.

Because they are basically accomplished

by repetitive application of

multiplication and addition, the speed of

the multiplication and addition

determines the execution speed and

performance of the entire computation.

As the multiplier exhibits inherently

long delay among the basic operational

blocks in digital system, the multiplier

determines the critical path.The demand

for high speed processing has been

increasing as a result of expanding

computer and signal processing

applications. Higher throughput

arithmetic operations are important to

achieve the desired performance in

many real-time signal and image

processing applications. One of the key

arithmetic operations in such

applications is multiplication and the

development of fast multiplier circuit

has been a subject of interest over

decades. Reducing the time delay and

power consumption are very essential

requirements for many applications.

This work presents different multiplier

architectures. Multiplier based on Vedic

Mathematics is one of the fast and low

power multiplier.In order to improve the

speed of the MAC unit, there are two

major bottlenecks. The first is the partial

products reduction network that is used

in the multiplication block and the

second is the accumulator. Both of these

stages require addition of large operands

that involve long paths for carry

propagation. The main key to the

proposed architecture is using the Vedic

multiplier to design the MAC unit and

compare the performance with the

conventional MAC units in terms of

area, speed and number of resources. It

is well known fact that the speed of

MAC is governed by the speed of the

multiplier. The Vedic multiplier uses

“Urdhva-Tiryagbhyam” algorithm.

Urdhva-Tiryakbhyam Sutra is first

applied to the binary number system and

is used to develop digital multiplier

architecture. This is shown to be very

similar to the popular array multiplier

architecture. This Sutra also shows the

effectiveness of to reduce the NXN

multiplier structure into an efficient 4X4

multiplier structures. The proposed

multiplication algorithm is then

illustrated to show its computational

efficiency by taking an example of

reducing a 4X4-bit multiplication to a

single 2X2-bit multiplication operation.

This work presents a systematic design

methodology for fast and area efficient

digit multiplier based on Vedic

mathematics .The Multiplier

Architecture is based on the Vertical and

Crosswise algorithm of ancient Indian

Vedic Mathematics.

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 948

1.2 PROBLEM DEFINITION

 To study different algorithms for

the designing of Adder circuits for the

implementation of MAC unit.

Figure 1.1 Block diagram of MAC Unit

 To study different algorithms for the

designing of Multiplier circuits for the

implementation of MAC unit.

 To study the performance of the

different Multiply-Accumulate unit by

combing different Multiplier and Adder

circuits.

 To compare the performance results of

the different MAC unit by combing

Multi-plier and Adder circuits this has

lower delay and area.

 To do FPGA implementation of the

obtained MAC unit.

1.3 THESIS ORGANISATION

 In chapter 2 the literature survey

on various Multiplier, Adder circuits,

and MAC units is presented. In chapter

3 the algorithms and implementation of

various Adders circuits which are used

in the design of MAC unit are discussed.

The algorithms and implementation of

different Multiplier circuits which are

used in the design of MAC unit are

discussed in chapter 4. In chapter 5 the

tools that are used to implement the

MAC unit are explained.

 Schematic and Simulation

results of multipliers, adders and

multiply-accumulate units are detailed

in chapter 6 and the comparison of

different MAC units with respect to area

and speed are studied. The thesis is

concluded with chapter 7, where the

conclusions from entire work done in

this project are presented.

2. VEDIC MULTIPLICATION

The proposed Vedic multiplier is based

on the Vedic multiplication formulae

(Sutras). These Sutras have been

traditionally used for the multiplication

of two numbers in the decimal number

system. In this work, we apply the same

ideas to the binary number system to

make the proposed algorithm

compatible with the digital hardware.

Vedic multiplication based on some

algorithms, is discussed below:

 Urdhva Tiryakbhyam sutra

The multiplier is based on an algorithm

Urdhva Tiryakbhyam (Vertical &

Crosswise) of ancient Indian Vedic

Mathematics. Urdhva Tiryakbhyam

Sutra is a general multiplication formula

applicable to all cases of multiplication.

It literally means “Vertically and

crosswise”. It is based on a novel

concept through which the generation of

all partial products can be done and

then, concurrent addition of these partial

products can be done. Thus parallelism

in generation of partial products and

their summation is obtained using

Urdhava Tiryakbhyam. The algorithm

can be generalized for n x n bit number.

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 949

Since the partial products and their sums

are calculated in parallel, the multiplier

is independent of the clock frequency of

the processor. Thus the multiplier will

require the same amount of time to

calculate the product and hence is

independent of the clock frequency. The

net advantage is that it reduces the need

of microprocessors to operate at

increasingly high clock frequencies.

While a higher clock frequency

generally results in increased processing

power, its disadvantage is that it also

increases power dissipation which

results in higher device operating

temperatures. By adopting the Vedic

multiplier, microprocessors designers

can easily circumvent these problems to

avoid catastrophic device failures. The

processing power of multiplier can

easily be increased by increasing the

input and output data bus widths since it

has a quite a regular structure. Due to its

regular structure, it can be easily layout

in a silicon chip. The Multiplier has the

advantage that as the number of bits

increases, gate delay and area increases

very slowly as compared to other

multipliers. Therefore it is time, space

and power efficient. It is demonstrated

that this architecture is quite efficient in

terms of silicon area/speed [3,5].

Multiplication of two decimal

numbers- 43*68

To illustrate this

multiplication scheme, let us consider

the multiplication of two decimal

numbers (43*68). The digits on the both

sides of the line are multiplied and

added with the carry from the previous

step. This generates one digit of result

and a carry digit. This carry is added in

the next step and hence the process goes

on. If more than one line are there in one

step, all the results are added to the

previous carry. In each step, unit’s place

digit acts as the result bit while the

higher digits act as carry for the next

step. Initially the carry is taken to be

zero. The working of this algorithm has

been illustrated in

Fig 2.2 Multiplication of 2 digit decimal

numbers using Urdhva Tiryakbhyam

Sutra

Now we will see how this algorithm can

be used for binary numbers. For

example (1101 * 1010) as shown in

Fig 2.3.

Fig 2.3 Using Urdhva Tiryakbham for

Binary numbers

Firstly, least significant bits are

multiplied which gives the least

significant bit of the product (vertical).

Then, the LSB of the multiplicand is

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 950

multiplied with the next higher bit of the

multiplier and added with the product of

LSB of multiplier and next higher bit of

the multiplicand (crosswise). The sum

gives second bit of the product and the

carry is added in the output of next stage

sum obtained by the crosswise and

vertical multiplication and addition of

three bits of the two numbers from least

significant position. Next, all the four

bits are processed with crosswise

multiplication and addition to give the

sum and carry. The sum is the

corresponding bit of the product and the

carry is again added to the next stage

multiplication and addition of three bits

except the LSB. The same operation

continues until the multiplication of the

two MSBs to give the MSB of the

product. For example, if in some

intermediate step, we get 110, then 0

will act as result and 11 as the carry. It

should be clearly noted that carry may

be a multi-bit number.

 16x16 bit Multiplier

The 16x16 Multiplier is made by using 4

, 8x8 multiplier blocks. Here , the

multiplicands are of bit size (n=16)

where as the result is of 32 bit size. The

input is broken into smaller chunks size

of n/2 = 8, for both inputs, that is a and

b. These newly formed chunks of 8 bits

are given as input to 8x8 multiplier

block, where again these new chunks

are broken into even smaller chunks of

size n/4 = 4 and fed to 4x4 multiply

block, just as in case of 8x8 Multiply

block. Again, the new chunks are

divided in half, to get chunks of size 2,

which are fed to 2x2 multiply block.

The result produced, from output of 8x8

bit multiply block which is of 16 bits,

are sent for addition to an addition tree ,

as shown in the Fig 3.7.

Fig 3.7Block diagram of 16x16 Multiply

block

Here, as shown in Fig 16, the lower 8

bits of q0 directly pass on to the result,

while the higher bits are fed for addition

into the addition tree. The addition of

partial products is shown in Fig 3.8.

Fig 3.8 Addition of Partial products in

16x16 block

3.2 Booth Multiplier

The Booth multiplier is also

known as Recoded booth multiplier, in

which the multiplicand is kept as it is

and the multiplier is recoded as a

recoded multiplier and then the

multiplication is done with multiplicand

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 951

and recoded multiplier. To reduce the

number of partial products in the

multiplier, the Multiplier uses Radix 2r

multipliers, which produces N/r partial

products, each of which depends on r

bits of the multiplier. Fewer partial

products lead to a smaller and faster

CSA (Carry Save Adder) array. For

example, a radix-4 multiplier produces

N/2 partial products. Each radix-4

multiplier produces N/2 partial

products. Each partial product is 0, Y,

2Y, or 3Y,depending on a pair of bits of

X. Computing 2Y is a simple shift, but

3Y is a hard multiple requiring a slow

carry-propagate addition of Y + 2Y

before partial product generation begins.

Higher-radix Booth encoding is

possible, but generating the other hard

multiples appears not to be worthwhile

for multipliers of fewer than 32 bits.

The figure 2 shows the basic

architecture of Booth multiplier.

3.3 Conventional Multiplier

The conventional multiplier of width N

x N bits will generate the N number of

partial products. The partial products are

generated by bit wise ANDing one

multiplier bit with another multiplier.

Hence, the N x N bit multiplier uses 2N-

multiplications and N-Adders in the

architecture of Conventional multiplier.

Fig. 4 below shows the basic

architecture of conventional multiplier.

The Multiplications and Additions are

significantly reduced in case of Vedic

Multiplier compared to Booth and

conventional multiplier. Table 1 gives

details about the Hardware resources

used i.e., Multiplications and Additions

in case of Vedic, Booth and

conventional multiplier for 8x8-bit,

16x16-bit & 32x32-bit.

3. SIMULATION RESULTS

3.1 32-Bit MAC Unit using Booth

Multiplier

RTL Schematic:

Fig 3.1 RTL Schematic of 32-bit MAC

unit using Booth multiplier and Kogg-

stone adder

SIMULATION WAVEFORM:

Fig 3.1.1 Simulation Waveform of 32-

bit MAC unit using Booth multiplier

and Kogg-stone adder

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 952

DEVICE UTILIZATION

SUMMARY:

Fig 3.2 Device Utilization Summary of

32-bit MAC unit using Booth

 multiplier and Kogg-stone adder

TIMING REPORT:

Logic Delay – 16.111 ns

Routing Delay- 57.412 ns

Total Delay- 73.524ns

3.2 32-Bit MAC Unit using Array

Multiplier

RTL Schematic:

Fig 3.3 RTL Schematic of 32-bit MAC

unit using Array multiplier and Kogg-

stone adder

SIMULATION WAVEFORM:

Fig 3.4 Simulation Waveform of 32-bit

MAC unit using Array multiplier and

 Kogg-stone adder

DEVICE UTILIZATION

SUMMARY:

Fig 3.5 Device Utilization Summary of

32-bit MAC unit using Array multiplier

 and Kogg-stone adder

TIMING REPORT:

Logic Delay – 6.821 ns

Routing Delay- 23.640 ns

Total Delay- 30.461 ns

3.3 DELAY AND UTILIZATION

COMPARISION:

Inferences:

 Vedic Multiply-Accumulate has low

logic delay, routing delay and total

delay also, and Booth Multiplier has

high delay among these three Multiply-

Accumulate units using Kogg-Stone

adder.

 Array Multiply-Accumulate unit has

less no of Slice LUTs are utilised and

Booth Multiply-Accumulate unit has

more no of Slice LUTs are utilised i.e

double the number of Array multiplier.

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 953

3.4 OVERALL COMPARISION 32-

BIT MAC UNITS

Inferences:

 Vedic Multiply-Accumulate unit

using with Carry skip adder has very

high speed among all the nine

combinations of MAC Units.

 Booth Multiply-Accumulate

Unit using Kogg-Stone Adder has high

delay among these Nine Multiply-

Accumulate units with different adders

and multipliers.

 Array Multiply-Accumulate unit

using Carry Skip Adder has less no of

Slice LUTs are utilised and Booth

Multiply-Accumulate unit using Carry

Save Adder has more no of Slice LUTs

are utilised among all the combinations

of MAC Units using different

multipliers and adders.

Table 6.10 Overall 32-Bit MAC Units

synthesis results comparison

Add

ers

Multip

liers

No

of

Sli

ce

LU

Ts

Log

ic

Del

ay

(ns)

Rout

ing

Dela

y

(ns)

Tot

al

Del

ay

(ns)

1.Ca

rry

Skip

Add

er

Vedic

36

09

5.7

98

20.1

04

26.

102

Booth

44

61

17.

283

50.6

44

67.

927

Array

28

22

6.8

78

23.9

96

30.

874

2.Ca

rry

Save

Add

Vedic

40

31

7.5

03

25.8

29

33.

332

Booth

57

62

13.

651

55.2

99

68.

950

er Array

31

05

8.4

69

27.9

89

36.

455

3.Ko

gg-

ston

e

Add

er

Vedic

38

74

5.8

59

20.9

82

26.

841

Booth

57

11

16.

111

57.4

12

73.

524

Array

29

27

6.8

21

23.6

40

30.

461

 CONCLUSION AND FUTURE

SCOPE

In this work 3-different types of 32-bit

Multipliers and 3 different types 32-bit

Adders are implemented. By using

different combinations of Multipliers

and Adders, 9-different types of 32-bit

Multiply-Accumulate units are

designed. The combination with Vedic

Multiplier and Carry-skip Adder

combination has the delay of 26.102 nS

for both logic and routing delay. So here

can be say that the UrdhvaTiryagbhyam

sutra with 32-bit Vedic Multiplier is the

best in the aspect of delay because of

this vertical and crosswise sutra no of

partial products required for

multiplication are reduced.The

combination 32-bit Array multiplier

with Carry skip adder has used less no

of Slice LUTs used for the

implementation i.e of 2822 slice LUTs

are used. In this design due to using of

multi block concept it has required

lesser area compared to remaining

Multiply-Accumulate units. The

design complexity and delay are

reduced due to use of the Vedic

Multipliers in the linear filtering,

correlation, spectrum analysis. This

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 954

Multiply-Accumulate Unit can be

extended higher bit MAC unit such as

full precision floating point MAC unit

or double precision floating point MAC

unit. The designed MAC unit may be

used to design VLSI architectures for

digital signal processing such as

convolution, Fast Fourier Transform

(FFT), Discrete Cosine Transform

(DCT), Discrete Wavelet Transform

(DWT), Adaptive Signal Processing.

REFERENCES

[1] Bisoyi, Baral, Senapati“
Comparision of a 32-bit Vedic

Multiplier with a Conventional Binary

multiplier. 2014 IEEE International

Conference on Advanced

Communication Control and Computing

Technologies.

[2] Yeh, W.C. and C.W.

Jen., 2003.\High-speed and low-power

split-radix FFT,"

IEEE Trans. Sig. Process.,

51:pp.864-874.

[3] Matsui, M, H. Hara, Y.

Uetani, L.S. Kim and T. Nagamatsu et

al., 1994.\A 200 MHz 13 mm2 2-D

DCT macrocell using sense-amplifying

pipeline ip- op scheme," IEEE J. Solid-

State Circ., 29:pp.1482-1490.

[4] Grossschadl, J. and G.A.

Kamendje, 2003. \A single-cycle (32x

32+ 32+ 64)-bit multiply/accumulate

unit for digital signal processing and

public-key cryptog-raphy, Proceedings

of the 10th International Conference on

Electronics, Circuits and

Systems.,pp.254-257

[5] Clark. L.T, E.J. Ho man,

J. Miller, M. Biyani and Y. Liao et

al.,2001. \An embedded 32-b

microprocessor core for low-power and

high-performance applica-tions, ", in :

IEEE J. Solid-State Circ.,36:pp.1599-

1608.

	1. INTRODUCTION
	1.1 MOTIVATION AND OVERVIEW
	1.2 PROBLEM DEFINITION
	1.3 THESIS ORGANISATION

	2. VEDIC MULTIPLICATION
	Urdhva Tiryakbhyam sutra
	Multiplication of two decimal numbers- 43*68
	Fig 2.2 Multiplication of 2 digit decimal numbers using Urdhva Tiryakbhyam Sutra
	Fig 2.3 Using Urdhva Tiryakbham for Binary numbers
	Fig 3.7Block diagram of 16x16 Multiply block
	3.2 32-Bit MAC Unit using Array Multiplier
	3.3 DELAY AND UTILIZATION COMPARISION:

	3.4 OVERALL COMPARISION 32-BIT MAC UNITS

	CONCLUSION AND FUTURE SCOPE
	REFERENCES

