

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2018IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 25
h

Nov 2018. Link

:http://www.ijiemr.org/downloads.php?vol=Volume-07&issue=ISSUE-12

Title: FPGA IMPLEMENTATION WITH IMPROVED WATCHDOG TIMERS FOR REAL TIME

FACILE SYSTEMS

Volume 07, Issue 12, Pages: 326–331.

Paper Authors

PERLA. SAI BHARGAVI, DUKKIPATI. VENKANNA BABU, DR. JAGAN

MOHAN RAO. S

Ramachandra College of Engineering, Eluru

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic

Bar Code

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 326

FPGA IMPLEMENTATION WITH IMPROVED WATCHDOG TIMERS

FOR REAL TIME FACILE SYSTEMS

PERLA. SAI BHARGAVI
1
, DUKKIPATI. VENKANNA BABU

2
, DR. JAGAN MOHAN RAO. S

3
,

1
M.Tech Student, Dept. Of ECE, Ramachandra College of Engineering, Eluru

2
Associate Professor, Dept of ECE, Ramachandra College of Engineering, Eluru

3
Prof. & HoD, Ramachandra College of Engineering, Eluru.

1
saibhargavi8888@gmail.com,

2
dvenkannababu@gmail.com,

3
jaganmohanrs@gmail.com

ABSTRACT: Embedded systems that are employed in safety critical applications require highest

reliability. External watchdog timers are used in such systems to automatically handle and recover

from operation time related failures. Most of the available external watchdog timers use additional

circuitry to adjust their timeout periods and provide only limited features in terms of their

functionality. This paper describes the architecture and design of an improved configurable watchdog

timer that can be employed in safety-critical applications. Several fault detection mechanisms are

built into the watchdog, which adds to its robustness. The functionality and operations are rather

general and it can be used to monitor the operations of any processor based real-time system. This

paper also discusses the implementation of the proposed watchdog timer in a Field Programmable

Gate Array (FPGA). This allows the design to be easily adaptable to different applications, while

reducing the overall system cost. The effectiveness of the proposed watchdog timer to detect and

respond to faults is first studied by analysing the simulation results. The design is validated in a real-

time hardware by injecting faults through the software while the processor is executing, and

conclusions are drawn.

KEY WORDS: watchdog timer; real-time systems; FPGA

I.INTRODUCTION

For applications where a system crash

could lead to human injury, highest

reliability is required. Such systems should

have fault tolerance mechanisms that

account for the unexpected to ensure

proper safety of operation. These systems

should also be able to recover from a crash

without any human assistance. These fault

tolerance mechanisms detect when a fault

occurs in order to handle the fault and to

limit the system downtime. One way to

achieve fault tolerance is by implementing

system redundancy. By using multiple

copies of the critical Components of the

system, the overall system reliability is

enhanced. Parsevals sum of squares checks

is the most widely known. In modern

communication systems, it is increasingly

common. However, this improved system

reliability is achieved through increased

hardware and software complexity,

depending on the type of architecture used.

When developing a fault-tolerant system,

one of the most cost effective ways of

detecting and handling operation time

related failures is the watchdog. A

watchdog timer (WDT) is a hardware

subsystem that monitors the operations of

the system and takes certain actions in the

event of detecting a fault. It typically

consists of a timer circuit and the

processor is required to periodically reset

the timer. If the WDT expires, it is a

secondary indication of some problem

mailto:dvenkannababu@gmail.com

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 327

with the system under observation. When

the processor fails to reset the watchdog, a

decision is made to restart the system or

put the system into a known state from

which it can recover, thus preventing

further damages. A watchdog can be

internal (on-chip) or external to the

processor. Internal watchdog reduces the

hardware complexity and cost, however, is

not a robust solution. The software has

control over it during runtime and a

runaway code can disable the watchdog

timer. Moreover, since it is connected to

the processor clock, a crystal failure will

make the watchdog incapable of

monitoring the hardware for faults. When

the reliability of an embedded system is

crucial, external watchdogs become

unavoidable. An external watchdog runs

independent of the processor and does not

share its clock with the processor. This

overcomes the limitations of internal

watchdogs and leads to much more robust

fault-tolerant system architectures. A class

of standalone watchdog timer microchips

offer only fixed timeout periods, which

make them less generic. Other set of

devices allow adjusting the timeout

periods by using additional external

circuitry. Though useful, this method adds

to the complexity of the hardware and

increases the overall system cost. The

increased cost and complexity of external

watchdogs can be managed to a certain

extend by realizing the watchdog

functionality within a Field Programmable

Gate Array (FPGA). Many of the modern

embedded systems incorporate one or

more FPGA devices to accomplish the

desired system functionality.

Accommodating the watchdog timer

within a FPGA can yield an efficient and

robust solution. The work done by

Giaconia et al. considered the

implementation of a custom concurrent

watchdog processor in FPGA for real-time

control systems. The design did not

provide a timer for the processor; rather, it

performed a reasonableness check on some

variables and a basic program flow check.

El-Attar et al. proposed a sequenced

watchdog timer that used time registers to

determine whether or not a fault has

occurred. However, it did not offer much

configuration options and the fault

detection features implemented were

limited. The authors addressed the basic

concepts of a multiple hardware watchdog

timer system in FPGA, but kept the design

of the watchdog simple.Recent years have

seen a growing interest in molecular

programming, programming matter at a

Nano scale level. Molecular programming

draws on computer science and biology to

create molecular systems. Instead of using

circuits and wires, a molecular system uses

structures such as DNA, RNA, or other

chemical molecules to perform

computational tasks. Molecular systems

have been used to create Boolean circuits,

perform digital signal processing and build

Molecular robots at the Nano scale level.

A molecular system can be modelled

through the use of chemical reaction

networks (CRNs). Stochastic chemical

reaction networks (SCRNs) model systems

that use finite numbers of molecules

through stochastic chemical kinetics. Mass

action chemical kinetics can be used to

model systems in terms of molecular

concentrations, i.e., what percentage of a

solution is made up by each species. One

way to implement CRNs is to use DNA

Strand Displacement (DSD). Molecular

systems are inherently probabilistic,

having an amount of uncertainty in all

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 328

interactions. This adds complexity to their

construction and use because nothing is

guaranteed. SCRNs are a useful

programming paradigm. The capabilities

of SCRNs have been thoroughly analysed,

and they have been compared to a number

of other computational models. SCRNs are

Turing Universal, able to compute any

function a Turing Machine can compute,

given an arbitrarily small probability of

error.

II. BACKGROUND

A watchdog timer is a device used in

safety-critical systems to inform either a

user or another system when a specific

system fails. A watchdog timer can be as

simple as a counter with one input and one

output. The counter increments until a

specified value and sends a signal on its

output to represent an alarm. Upon

receiving input, the counter is reset to zero

and begins counting again. Nancy

Levisohn describes a watchdog timer as a

timer that the system must keep restarting.

If the system fails to restart the timer

within a given period, the watchdog

initiates some type of protection action"

[20]. John Knight describes a watchdog

timer as a countdown timer that is set by

an application and which raises an

interrupt when it expires". It is a device

designed to monitor a single external

system and take a specified action, usually

issuing an alarm, when the system fails.

Figure 1 and Figure 2 show the two

possible outcomes of a watchdog timer

where the counter threshold value is set to

4. A watchdog timer has a delay

component, an alarm component, and

detects the presence of an external

heartbeat. In the absence of a heartbeat for

some time period, the alarm is triggered.

The heartbeat acts to delay the alarm for

another time period by resetting the

counter. If another heartbeat is not input

into the system during the new time

period, the alarm will go o_. The

heartbeats are added at specified intervals,

to keep the alarm from being issued. If the

alarm is issued, it means that the

monitored system is unable to release a

heartbeat and, therefore, is in a failed state.

Figure 1 a watchdog timer that does not

receive a heartbeat. It counts until reaching

its

Specified value and sends out an alarm.

Figure 2 a watchdog timer that receives a

heartbeat at 75% of its specified value. It

resets It’s counter to zero and begins

counting again. It does not receive

another heartbeat

So it releases an alarm upon completion

We used the Goal-oriented Requirements

Engineering process denned in to dine our

requirements. Van Lamsweerde dense a

goal as a prescriptive statement of intent

the system should satisfy through

cooperation of its agents". A goal models

an aspect of the target system in a simple

and concise manner. A simple view of the

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 329

requirements can be useful for explaining

the system to stakeholders. A goal dense a

task the system needs to complete. We

dine a top-level goal that represents the

task. We then renew each goal into sub

goals and repeat the process until we have

leaf level goals. Goal-Oriented

Requirements Engineering distinguishes

between behavioural goals and soft goals.

Behavioural goals describe intended

system behaviour and can be Achieve

goals or Maintain/ Avoid goals. An

Achieve goal is a target that must be

completed. A Maintain goal is a condition

that needs to be maintained during

operation. An Avoid goal is a condition

that needs to be avoided. Soft goals

describe preferences between alternative

system behaviours and are used to

compare alternative options.

III. PROPOSED ARCHITECTURE

Real-time computer systems are defined as

systems that are in any conditions able to

guarantee their response time. Such

systems are used mostly in various

embedded devices to guarantee their

usability, for example to ensure smooth

video playback, and in various industrial

control applications. Their utilization in

industrial application is often connected

with the mission-critical tasks that need to

be accomplished in time to prevent system

malfunction or damage. The real-time

computer system is usually implemented

on specific hardware aimed for such

purposes. It can run a simple application

that takes care of the whole controlled

system or an operating system with several

applications of which each one has its own

task and response deadline defined. One of

the methods to recover such systems from

error states and ensure their further

functionality and responsiveness is

utilization of watchdog timers. Watchdog

timer is a hardware device usually realized

by a counter with match register and

specific system connections.The device

itself is capable of sending only one

message – the indication that the particular

timer has overflowed. Each message

consists of the opcode byte that defines the

operation and the address of the involved

timer. The message for loading the timer

with new value includes also the value to

be loaded into the timer. The control unit

has been designed as a sequential circuit

without any parallel capabilities.

Assuming that the communication with the

master device and the timers’ service is

relatively sparse, this appears to be a

sufficient solution. As the control unit also

handles the situation when a timer

overflows, it has to be notified that such

situation has occurred and has to obtain the

number of the overflowed timer. The

notification of the overflow state is

propagated from each timer to the control

unit. After the control unit notices this

state, it enables the write circuitry to write

the number (address) of the overflowed

timer to the address bus. This is realized

by encoding the actual counter position

and placing the encoded address on the

address bus. Each of the timers is

addressed by its exclusive 8-bit address.

When particular timer is accessed, the

Serial Load, Communication Clock and

Reset inputs are connected to the control

unit. Otherwise, the connection with the

control unit is disabled and the inputs

remain in their default values. All

watchdog timers are managed by the

control unit that is responsible for their

loading, restarting, and reading their

overflow flags. It is also capable of

handling the communication messages

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 330

between the master processor and the

device. The encoders are connected to the

cascade, similarly as the decoders. We also

need to deliberate that the overflow can

occur in several timers at the same time.

Thus, the circuit needs to assign priorities

to the timers and also has to ensure that the

address bus would be written only by one

device at the same time. For fulfilling the

first requirement we decided to use

encoders with priority. The exclusive bus

access could be however achieved only by

providing feedback from the hierarchically

higher priority encoders to the subordinate

priority encoders. For such function, we

have developed a nonstandard architecture

which provides both encoding with

priority and the feedback decoding

function. The circuit also serves the

purpose of propagating the overflow flag.

The scheme of the proposed architecture

for the address encoding process is shown

in Fig 3.

Fig. 3: proposed architecture

IV.RESULTS

Fig. 4: RTL schematic

Fig. 5: Technology schematic

Fig. 6: OUTPUT

Fig. 7: REPORT

V. CONCLUSION

This paper presented in detail the

architecture and design ofan improved

windowed watchdog timer and its

implementation in FPGA. The watchdog

timer runs completely independent of the

processor and permits adjusting the timer

parameters according to the application.

Several fault detection techniques are built

into the watchdog for the early detection of

erratic software modes. It has the

capability to identify the failure type and

log it, which can become valuable while

debugging. Upon detecting a failure, the

Vol 07 Issue12, Nov 2018 ISSN 2456 – 5083 Page 331

watchdog timer also allows the software

sufficient time for saving the debug

information, before initiating a reset.

Implementing the entire design in FPGA

has the advantage of making it adaptable

and reusable. HDL based designs are

vendor-independent and can be used on

different FPGA devices with low

overhead. The same design can also be

customised for different processors and

applications with only minor HDL

modifications. In addition, realizing the

design in FPGA addresses the component

obsolescence issues present in long life

cycle embedded systems. The

implementation has low complexity and

takes up very less amount of hardware

resources.

VI. REFERENCES

[1] S. N. Chau, L. Alkalai, A. T. Tai, and

J. B. Burt, “Design of a

faulttolerantCOTS-based bus

architecture,” IEEE Transactions on

Reliability, vol. 48, no. 4, pp. 351–359,

Dec. 1999.

[2] V. B. Prasad, “Fault tolerant digital

systems,” IEEE Potentials, vol. 8, no. 1,

pp. 17–21, Feb. 1989.

[3] J. Beningo, “A review of watchdog

architectures and their application to

Cubesats,” Apr. 2010.

[4] A. Mahmood and E. J. McCluskey,

“Concurrent error detection using

watchdog processors - a survey,” IEEE

Transactions on Computers, vol. 37, no.

2, pp. 160–174, Feb. 1988.

[5] B. Straka, “Implementing a

microcontroller watchdog with a field

programmable gate array (FPGA),” Apr.

2013.

[6] J. Ganssle, “Great watchdogs,” V-1.2,

The Ganssle Group, updated January

2004, 2004.

[7] E. Schlaepfer, “Comparison of internal

and external watchdog timersapplication

note,” Maxim Integrated Products, 2008.

[8] P. Garcia, K. Compton, M. Schulte, E.

Blem, and W. Fu, “An overview of

reconfigurable hardware in embedded

systems,” EURASIP Journalon Embedded

Systems, vol. 2006, no. 1, pp. 13–13, Jan.

2006.

[9] G. C. Giaconia, A. Di Stefano, and G.

Capponi, “FPGA-based concurrent

watchdog for real-time control systems,”

Electronics Letters, vol. 39, no. 10, pp.

769–770, Jun. 2003.

[10] A. M. El-Attar and G. Fahmy, “An

improved watchdog timer to enhance

imaging system reliability in the presence

of soft errors,” in Signal Processing and

Information Technology, 2007 IEEE

International Symposium on. IEEE, Dec.

2007, pp. 1100–1104.

