
 
 

Vol 07  Issue10, Sept 2018         ISSN 2456 – 5083                                                          www.ijiemr.org 

  

COPY RIGHT  

2018 IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must 

be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 

component of this work in other works. No Reprint should be done to this paper, all copy 

right is authenticated to Paper Authors   

IJIEMR Transactions, online available on 25
th

 Sept 2018. Link 

:http://www.ijiemr.org/downloads.php?vol=Volume-7&issue=ISSUE-10 

 

Title: DETECT WEAKNESS AND ELIMINATION IN NETWORK APPLICATIONS THROUGH 

STATIC ANALYSIS AND INFORMATION COMPILATION 

 

Volume 07, Issue 10, Pages: 130–134. 

Paper Authors  

M.PRANAVI , T.SHANKAR  

Kshatriya College Of  Engineering, Armoor, Nizamabad T.S, India 

 

 

 

 

 

 

 

                                         

                                                                                    USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER  

 

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic 

Bar Code 



 

Vol 07 Issue10, Sept 2018                             ISSN 2456 – 5083 Page 130 

 

 

DETECT WEAKNESS AND ELIMINATION IN NETWORK 

APPLICATIONS THROUGH STATIC ANALYSIS AND 

INFORMATION COMPILATION 

M.PRANAVI 
1
, T.SHANKAR 

2
 

1
M.Tech Student, Dept of CSE, Kshatriya College Of  Engineering, Armoor, Nizamabad T.S, India 

2
Assistant Professor, Kshatriya College Of  Engineering, Armoor, Nizamabad T.S, India India 

 

ABSTRACT: 

In spite of the way that a broad research effort on web application security has been proceeding 

for more than 10 years, the security of web applications continues being a trying issue. A 

fundamental bit of that issue gets from defenseless source code, consistently written in unsafe 

lingos like PHP. Source code static examination gadgets are a response for find vulnerabilities, 

anyway they tend to make false positives, and require huge effort for programming architects to 

physically settle the code. We explore the usage of a blend of procedures to discover 

vulnerabilities in source code with less false positives. We join ruin examination, which finds 

cheerful vulnerabilities, with data mining, to predict the nearness of false positives. This 

philosophy joins two approachs that are clearly symmetrical: individuals coding the data about 

vulnerabilities (for degenerate examination), joined with the evidently symmetrical system of 

subsequently understanding that data (with machine learning, for data mining). Given this 

overhauled kind of revelation, we propose doing customized code modification by embeddings 

settles in the source code. Our approach was realized in the WAP contraption, and a test 

evaluation was performed with an extensive course of action of PHP applications. Our gadget 

found 388 vulnerabilities in 1.4 million lines of code. Its precision and exactness were around 

5% better than PhpMinerII's and 45% better than Pixy's.  

Keywords: Data mining, Security, Wireless application protocol, Encoding, Testing, Computer 

architecture, Accuracy 

1. INTRODUCTION: 

since its appearance in the mid 1990s, the 

web developed from a stage to get to content 

in addition other media to a system for 

running complex web applications. these 

applications show up in numerous 

structures, from little home-made to 

expansive scale business administrations 

(e.g., google docs, twitter, facebook). be that 

as it may, web applications have been 

tormented with security issues. for instance,  

an ongoing report shows an expansion of 

web assaults of around 33% out of 2012. 

apparently, a purpose behind the weakness 

of web applications is that numerous 

software engineers need proper learning 

about secure coding, so they leave 

applications with imperfections. 

notwithstanding, the instruments for web 

application security fall in two limits. on one 

hand, there are strategies that set the 

software engineer aside, e.g., web 

https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:%22Data%20mining%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:%22Security%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:%22Wireless%20application%20protocol%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:%22Encoding%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:%22Testing%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:%22Computer%20architecture%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:%22Computer%20architecture%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:%22Accuracy%22&newsearch=true


 

Vol 07 Issue10, Sept 2018                             ISSN 2456 – 5083 Page 131 

 

application firewalls and in addition other 

runtime assurances . then again, there are 

systems that find vulnerabilities yet put the 

weight of expelling them on the developer 

alongside static analysis. the paper 

investigates a methodology for consequently 

securing web applications while keeping the 

software engineer on top of it. the 

methodology comprises in investigating the 

web application forerunner code hunting 

down information approval vulnerabilities in 

addition embeddings settles in a similar code 

to adjust these defects. the software engineer 

is kept on top of it by being permitted to 

comprehend where the vulnerabilities were 

discovered together with how they were 

revised. this contributes straightforwardly 

for the security of web applications by 

evacuating vulnerabilities, as an outcome in 

a roundabout way by giving the developers a 

chance to gain from their mistakes.enabled 

by embeddings fixes that take after basic 

security coding rehearses, so software 

engineers can take in these practices by 

observing the vulnerabilities and also how 

they were expelled. we investigate the 

utilization of a novel blend of strategies to 

identify this sort of vulnerabilities: static 

examination alongside declaration 

burrowing. static investigation is a powerful 

systems to discovervulnerabilities in 

authority code, but tends to report many 

false positives (non-vulnerabilities) due to 

its undecidability. this problem is 

particularly difficult with languages such as 

php that are weakly typed as well as not 

formally specified. therefore, we 

complement a form of static analysis, taint 

analysis, with the use of testimony 

prospecting to predict the existence of false 

positives. this solution combines two 

apparently opposite approaches: humans 

coding the knowledge about vulnerabilities 

(for taint analysis) versus automatically 

obtaining that knowledge (with supervised 

machine learning supporting input mining). 

to predict the existence of false positives we 

introduce the novel idea of assessing if the 

vulnerabilities detected are false positives 

using testimony tapping. to do this 

assessment, we measure attributes of one's 

code that we observed to be associated with 

the presence of false positives, along with 

use a combination of your three top-ranking 

classifiers to flag every vulnerability as false 

positive or not.ensuring that the code 

correction is done correctly requires 

assessing that the vulnerabilities are 

removed as a consequence that the correct 

behavior of your application is not modified 

by the fixes. we propose using program 

mutation along with regression testing to 

confirm, respectively, that the fixes do the 

function to what they are programmed to 

(blocking malicious inputs) together with 

that the application remains working as 

expected (with benign inputs). notice that 

we do not claim that our approach is able to 

correct any vulnerability, or to detect it, only 

the input validation vulnerabilities it is 

programmed to deal with. the paper also 

describes the design from the web 

application protection (wap) device that 

implements our approach. wap analyzes 

moreover removes input validation 

vulnerabilities from code1 written in php 5, 

which according to a recent report is used by 

more than 77% of one's web applications. 

wap covers a unexclusive collection of 

classes of vulnerabilities: sql injection (sqli), 

cross-site scripting (xss), remote file 

inclusion, local file inclusion, directory 



 

Vol 07 Issue10, Sept 2018                             ISSN 2456 – 5083 Page 132 

 

traversal/path traversal, source code 

disclosure, php code injection, as well as os 

command injection. the first two continue to 

be among the highest positions of one's 

owasp top 10 in 2013 , whereas the rest are 

also known to be high risk, especially in 

php. currently wap assumes that the 

background database is mysql, db2 we use 

the terms php code, script, as a consequence 

programs interchangeably in the paper, 

following a common practice. or postgresql. 

the gizmo might be extended with more 

flaws moreover databases, but this set is 

enough to demonstrate the concept. 

designing along with implementing wap was 

a challenging task. the engine does taint 

analysis of php programs, a form of picture 

flow analysis. to do a first reduction in the 

choice of false positives, the engine 

performs global, interprocedural along with 

context-sensitive analysis, which means that 

picture flows are followed even when they 

enter new functions moreover other modules 

(other files). this involves the management 

of several data structures, but also to deal 

with global variables (that in php can appear 

anywhere in the code, simply by preceding 

the name with global or through the 

$_globals array) as well as resolving module 

names (which can even contain paths taken 

from environment variables). handling 

object orientation with the associated 

inheritance as a consequence polymorphism 

was also a really extensive challenge. we 

evaluated the device experimentally by 

running it with both simple synthetic code 

along with with 45 impartial php web 

applications available in the internet, adding 

up to more than 6,700 files moreover 

1,380,000 lines of code. our results suggest 

that the device is capable of finding along 

with correcting the vulnerabilities from the 

classes it was programmed to handle. the 

main contributions in the paper are: (1)an 

approach for improving the security of web 

applications by combining detection as well 

as automatic correction of vulnerabilities in 

web applications; (2) a combination of taint 

analysis moreover goods tunneling 

techniques to identify vulnerabilities with 

low false positives; (3) a medium that 

implements that approach for web 

applications written in php with several 

database management systems; (4) a 

depiction of your contour in the info digging 

ingredient moreover an developmental 

assessment of your device having a 

unexclusive variety of accessible antecedent 

php applications.. 

2. Implementation: 

Taint Analysis: 

The corrupt analyzer is a static investigation 

apparatus that works over an AST made by a 

lexer and a parser, for PHP 5 for our 

situation. In the start of the investigation, all 

images (factors, capacities) are untainted 

except if they are a section point. The tree 

walkers assemble a spoiled image table 

(TST) in which each cell is a program 

articulation from which we need to gather 

information. Every cell contains a subtree of 

the AST in addition to a few information. 

For example, for proclamation $x = $b + $c; 

the TST cell contains the subtree of the AST 

that speaks to the reliance of $x on $b and 

$c. For every image, a few information 

things are put away, e.g., the image name, 

the line number of the announcement, and 

the taintedness. 

Predicting False Positives: 



 

Vol 07 Issue10, Sept 2018                             ISSN 2456 – 5083 Page 133 

 

The static examination issue is known to be 

identified with Turing's ending issue, and in 

this manner is un-decidable for nontrivial 

dialects. Practically speaking this trouble is 

unraveled by making just a fractional 

examination of some dialect constructs, 

leading static investigation apparatuses to be 

unsound. In our methodology this issue can 

show up, for instance, with string control 

activities. For example, it is hazy on what to 

do to the condition of a polluted string that 

is handled by tasks that arrival a substring or 

link it with another string. The two activities 

can untaint the string, yet we can not choose 

with finish assurance. We selected by letting 

the string polluted, which may prompt false 

positives however not false negatives. The 

investigation may be additionally refined by 

considering, for instance, the semantics of 

string control capacities, However, coding 

unequivocally more learning in a static 

examination instrument is hard and regularly 

must be improved the situation each class of 

vulnerabilities (takes after this heading yet 

thinks about a solitary class of 

vulnerabilities, SQLI). Additionally, the 

people who code the learning have first to 

get it, which can be unpredictable. 

Information mining permits an alternate 

methodology. People name tests of code as 

powerless or not, at that point machine 

learning procedures are utilized to arrange 

the instrument with information gained from 

the marked examples. Information mining at 

that point utilizes that information to dissect 

the code. The key thought is that there are 

indications in the code, e.g., the nearness of 

string control activities, that propose that 

hailing a specific example as a 

defenselessness might be a false positive. 

The evaluation has basically two stages:  

1) meaning of the classifier – pick an agent 

set of vulnerabilities recognized by the spoil 

analyzer, confirm on the off chance that they 

are false positives or not, extricate an 

arrangement of characteristics, break down 

their measurable relationship with the 

nearness of a false positive, assess hopeful 

classifiers to pick the best for the for 

example, characterize the parameters of the 

classifier;  

2) arrangement of vulnerabilities – given the 

classifier, for each defenselessness found by 

our methodology decide whether it is a false 

positive or not. 

4. CONCLUSION: 

This paper exhibits a methodology for 

finding and adjusting vulnerabilities in web 

applications, and an instrument that executes 

the methodology for PHP projects and 

information approval vulnerabilities. The 

methodology and the instrument scan for 

vulnerabilities utilizing a mix of two 

procedures: static source code investigation, 

and information mining. Information mining 

is utilized to distinguish false positives 

utilizing the main 3 machine learning 

classifiers, and to legitimize their quality 

utilizing an enlistment lead classifier. All 

classifiers were chosen after an exhaustive 

correlation of a few options. Note that this 

blend of location methods can't give 

completely redress results. The static 

investigation issue is un-decidable, and 

turning to information mining can't go 

around this un-decidability, however just 

give probabilistic outcomes. The device 

remedies the code by embeddings fixes, i.e., 

disinfection and approval capacities. Testing 

is utilized to check if the fixes really expel 

the vulnerabilities and don't trade off the 

(right) conduct of the applications. The 



 

Vol 07 Issue10, Sept 2018                             ISSN 2456 – 5083 Page 134 

 

device was explored different avenues 

regarding utilizing manufactured code with 

vulnerabilities embedded intentionally, and 

with an extensive number of open source 

PHP applications. It was likewise contrasted 

and two source code investigation 

apparatuses: Pixy, and Php MinerII. This 

assessment recommends that the instrument 

can recognize and adjust the vulnerabilities 

of the classes it is customized to deal with. It 

could discover 388 vulnerabilities in 1.4 

million lines of code. Its exactness and 

accuracy were roughly 5% superior to 

PhpMinerII's, and 45% superior to Pixy's. 

REFERENCES: 

[1] Symantec, Internet threat report. 2012 

trends, vol. 18, Apr. 2013. 

[2] W. Halfond, A. Orso, and P. Manolios, 

“WASP: protecting web applications using 

positive tainting and syntax aware 

evaluation,” IEEE Trans. Softw. Eng., vol. 

34, no. 1, pp. 65–81, 2008. 

[3] T. Pietraszek and C. V. Berghe, 

“Defending against injection attacks through 

context-sensitive string evaluation,” in Proc. 

8th Int. Conf. Recent Advances in Intrusion 

Detection, 2005, pp. 124–145. 

[4] X. Wang, C. Pan, P. Liu, and S. Zhu, 

“SigFree: A signature-free buffer overflow 

attack blocker,” in Proc. 15th USENIX 

Security Symp., Aug. 2006, pp. 225–240. 

[5] J. Antunes, N. F. Neves, M. Correia, P. 

Verissimo, and R. Neves, “Vulnerability 

removal with attack injection,” IEEE Trans. 

Softw. Eng., vol. 36, no. 3, pp. 357–370, 

2010. 

[6] R. Banabic and G. Candea, “Fast black-

box testing of system recovery code,” in 

Proc. 7th ACM Eur. Conf. Computer 

Systems, 2012, pp. 281–294. 

[7] Y.-W. Huang et al., “Web application 

security assessment by fault injection and 

behavior monitoring,” in Proc. 12th Int. 

Conf. World Wide Web, 2003, pp. 148–159. 

[8] Y.-W. Huang et al., “Securing web 

application code by static analysis and 

runtime protection,” in Proc. 13th Int. Conf. 

World Wide Web, 2004, pp. 40–52. 

 


