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ABSTRACT 

                In this paper, we discuss parametric accelerated over relaxation (PAOR) method for the solution of semi-nonlinear 

systems with linear diagonals. A numerical example is considered to show the efficiency of this method. 

Keywords: 

                     Iterative methods, Jacobi, Gauss-Seidel, SOR,AOR, non-linear equations. 

1   INTRODUCTION  

We consider the semi nonlinear system with linear 

diagonals as introduced by V. B. Kumar Vattiet.al[5],is 
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Let the matrix derived from(1.1) i.e.,

 

mailto:drvattivbk@yahoo.co.in
mailto:pkusuma1991@gmail.com
mailto:dean.hbs@giet.ac.in
mailto:mksannthosh@gmail.com
mailto:golaganichinnarao@gmail.com


 

Vol10 Issue08, Sept 2021                              ISSN 2456 – 5083   Page 153 

 

                

11 12 1

21 22 2

1 2

. . .

. . .

. . . . . .
. ............(1.2)

. . . . . .

. . . . . .

. . .

n

n

n n nn

a a a

a a a

A

a a a

 
 
 
 

  
 
 
 
  

 be a positive definite matrix. 

The PAOR method developed by V. B. Kumar 

Vattiet.al[6], for the solution of linear system 

                          
(D L U) ................... (1.3)

A X b

or

X b



  
 

where L,U, and D are strictly lower, strictly upper 

triangular parts  and diagonal parts of the matrix  'A' 

respectively, is given by  

1[(1 ) ] {(1 ) (r ) } .............(1.4)

(n 0,1,2,.....)

n n
I L X r I L rU X r b   

   
        


 

where    
1 1 1, , ..........(1.5)L D L U D U b D b

  
      

The methods such as AOR, SOR, Gauss-Seidel and Jacobi 

can be realized form (1.4) 

for the choice of (α, r, ω) = (0, r, ω), (0, ω, ω), (0,1,1), 
(0,1,0) respectively. 

   Let the minimum and maximum eigen values  of the 

Jacobi matrix 

                                               
...........(1.6)J L U

 

   

in magnitude be     and     respectively. 

And also, the choice of the parameters  r and ω in the 
PAOR method given in [6 ] as 
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where 
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We discuss Parametric accelerated  over relaxation (PAOR) 

method in section-2 and a numerical example to show the 

effectiveness of this methods in the concluding section. 

2  PARAMETRIC ACCELERATED 

OVER RELAXATION (PAOR) 

METHOD FOR THE SOLUTION OF 

(1.1) 

    Re-Writing the system (1.1) as done in [5], as  

112 1

1 12 2 1

11 11 11

221 2
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Forming the matrix As by collecting the coefficients of 

functions as well as variables from (2.1), we have 
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The PAOR method for the solution of (2.1) is given by 
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 The above method (2.3) in matrix notation can be 

expressed as 
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The PAOR iterative matrix is

  1((1 ) I L) (1 ) I ( )L r U ........ (2.4)
s

P r r   
  

       

The PAOR method  converges if the spectral radius 

Ps is less than one i.e., 

(P ) 1 .......... (2.5)
s

 

 
3 NUMERICAL EXAMPLES 

Example 3.1: 

We consider a semi non-linear system with linear diagonals 

considered in V. B. Kumar Vatti et.al [5] 

3 2

1 2 3

3

1 2 3

2 2

1 2 3

20 18

7 2 4 ...........(3.1)

2 10 7

x x x

x x x

x x x

  


    
    

 

whose exact solution is a unit vector.
  

The matrix 𝐴𝑆 for the system (3.1) as obtained in (1.2) i.e., 

20 1 1

1 7 2 ....... (3.2)

1 2 10

s
A

  
    
   

 

is positive definite whose Jacobi matrix  𝐽𝑆 is            

0 1/ 20 1/ 20

J 1/ 7 0 2 / 7  

1 /10 2 /10

........ (3.3)

0

s

 
   
  

 

The eigen values of the Jacobi matrix are found to be 

0.281822,0.042332 and 0.239490. And, hence

0.042332 & 0.281822   . The relaxation parameter

 of SOR method as defined in (1.9) with α=0,  is obtained as   

1.02068588 .......(3.4)   

 The methods discussed in this paper are applied to obtain 

the solution of (3.1) up to an error less than 0.5×10-12 

taking a null vector as an initial guess and 
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the results obtained are tabulated below along with the 

error 

1

1 .
n

i

i

E x


   

Table:1 
 

Metho

ds 

 

 

Choices of 

(α,r,ω) 

 

No. Of 

iterations 

took for 

the 

converge

nce 

(n) 

 

Error 

(E) 

Jacobi (0,1,0) 40 0.105235

33e-5 

Gauss

-

Seidel 

(0,1,1) 22 0.338489

31e-6 

SOR (0,1.02068588,1.02068

588) 

20 0.349622

02e-6 

AOR (0,1.02975085,1.02068

588) 

19 0.399428

7e-1 

PAOR (-

0.663,0.35989348,0.34

397114) 

14 0.893825

22e-1 

4   CONCLUSION 

It can be seen from the above tabulated results that the 

converging rate of PAOR method is superior to the 

methods discussed in this paper though the total error E is 

different in each of these methods.  
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