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ABSTRACT: Dynamic State Estimation (DSE) is a very important control center application used in the dynamic 

monitoring of state variables. With emerging synchronized phasor measurement technology, estimating dynamic 

state in real time (post fault) for the grid operation become feasible.  Phasor Measurement Unit (PMU) is the device 

which measures bus voltage phasor at the bus to which it is connected and current phasors through the lines 

connected to that bus. However, PMU measurements undergo random errors and bad data unavoidably caused by 

the sensor errors, disturbances, etc.  In this paper, a framework of power system Dynamic State Estimation based on 

synchrophasor measurement with machine learning method is proposed. In this DSE of synchronized phasor 

measurements is performed for a virtual node using the measurements from the other nodes in the network by 

undertaking a separate DSE at each generator and substation level. This system uses two supervised machine 

learning approaches namely, Generalized Linear Models and Artificial Neural Networks to provide estimates. This 

paper illustrates Power system DSE on an IEEE 14-bus test system using proposed method with measurements 

obtained from PMU. The simulation result shows the increased accuracy of the dynamic generator state estimation 

and a better performance of the applied method indicate very low error rates; the average error for voltage 

magnitude was approx for the overall system distributed state estimator.  

KEYWORDS: Phasor Measurement Unit (PMU), Dynamic State Estimation (DSE), Machine learning, 
synchronized phasor measurement 

 

I. INTRODUCTION 
In very simple words, the state estimation is 

defined as the procedure of estimating the 
power system state variables, which 

knowledge of them is highly important for a 

wide variety of applications such as 

contingency assessment, correcting 
thegenerator operation, etc. Roughly 

speaking, the state estimation (SE) may be 

categorized into the static SE, tracking SE, 

and dynamic SE [1]. The static SE is 
characterized by extracting the power 

system state variable within a particular 

amount of time. In this case, the state 

estimation algorithm has an iterative nature 
with a flat start initialization. This results in 

a very high computational burden which  

 

 

may not be concluded in a short period. To 

deal with this issue, tracking state estimation 
was developed based on the last computed 

state variables [2]. However, in static and 

tracking SE, state variables are estimated 

Uusing a single set of measurements. 
Accordingly, dynamic state estimation is 

developed, which possesses the ability to 

extract the power system state variables 

within a short period of time. 
Conventionally, distribution networks 

transported electricity from the transmission 

substations to the end consumers. The one 

way flow of electricity and radial topology 
meant that conservative dimensioning of the 

network was sufficient to ensure the correct 
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operation, without too many real-time 

measuring points. However, over the last 

decade, more consumers, communities and 

businesses have installed distributed 
generators. The integration of the electricity 

system with the transport (e.g. electric 

vehicles) and heating (e.g. fuel cell 

cogeneration units) infrastructures is also 
taking place at the medium and low voltage 

levels of the electricity grid. With these 

technologies come a series of challenges 

which require the network operators to have 
complete network observability, similar to 

the transmission system operators. However 

the distribution network requires 

significantly more measuring devices than 
the transmission network to achieve this. In 

this paper, we investigate the performance 

of a machine learning (ML) driven engine to 

replace physical measurement devices on 
the electricity networks. A dataset of real 

measurements from the same network are 

utilized to train models for estimating 

measurements. These trained models are 
capable of providing pseudo measurements 

based only on the real measurements from 

the other nodes. The applications for the ML 

engine include the reduction of the number 
of physical measurement devices installed 

or, in case of a temporary failure of the 

measurement device, fill in for the lack of 

measurements [3].  
 

II. LITERATURE SURVEY 
State estimation plays a crucial role in 

monitoring the operating state of the power 

system [4]. It is the method used for finding 
the voltage and phase angle at each bus from 

the available measurements to recognize the 

existing operating state. It requires measured 

values to make the system precise and 
monitor efficiently. The state estimation of a 

power system includes collecting the real 

time measurement data, which includes 

active & reactive power flows through the 

lines, power injections at the buses and 

voltage measurements and calculating the 

state vector using a predefined state 
estimation algorithm [5]. Power system state 

estimation is generally classified into three 

types: static state estimation, dynamic state 

estimation and tracking state estimation [6].  
 

Static state estimator will not provide true 

dynamic state because the measurements are 

not time synchronized. In tracking state 
estimation, the state once estimated is 

updated again and again with new set of 

measurements for the next time period. The 

state estimation algorithm is not run 
completely every time. So tracking state 

estimation also will not provide true 

dynamic state of the power system and it is 

not reliable for real time monitoring of 
power system. Among the three, dynamic 

state estimation ensures real time monitoring 

of the power system by estimating the state 

one step ahead [5]. Many DSE algorithms 
are available in literature for which filtering 

requirement is essential. In case of DSE 

based on exponential smoothing techniques, 

filtering is seldom required. 
 

The SEs that uses RTU-SCADA and PMU 

measurements are defined as combined state 

estimators (CSEs). These may consist of 
one-stage process and in which both kinds 

of measurements are used on a hybrid 

algorithm (HSE), or may consist of two-

stage process. Some authors propose hybrid 
onestage CSEs which run at SCADA speed 

and therefore are unable to estimate the 

dynamic of the state in the presence of 

disturbances. PMU measurements are used 
in order to coordinate angles between areas 

when dealing with distributed estimators, or 

increase the number of measurements and 

thus the estimation accuracy [7]. 



 

Vol 10 Issue05, May2021                                 ISSN 2456 – 5083   Page 227 
 

Furthermore, twostage CSEs at PMU speed 

are proposed, which can be both static type 

(SSE) and dynamic type (DSE). The SSEs 

use present measurements in order to 
estimate the state in the same time instant. 

The DSEs use present measurements as well 

as past measurements [8].  

In [9] DSEs that operate at PMU speed and 
are based on Kalman filter are proposed. 

These methods adopt dynamic models only 

to represent the slow evolution of the 

system. In [10] it is proposed a two-stage 
SSE that runs at PMU speed and capable of 

estimating the dynamic behavior of the 

system state in the presence of fast 

phenomena. The first stage consists of an 
iterative HSE based on the WLS technique 

and the second stage is a linear estimator 

(LSE) based only on PMU measurements. 

Because it is a partially observed system by 
PMU measurements, current pseudo-

measurements from estimation at the 

previous instant are added. This method 

could generate errors mainly in the presence 
of sudden changes in the system. Besides, it 

presents limitations when the electrical 

distance between PMU measurements and 

non-observed buses is greater than two 
buses [10]. 

III. PROPOSED ARCHITECTURE 
The proposed method can be used as a 

solution to the multi-stage optimal PMU 
placement problem in which a gradual 

deployment of PMUs across the distribution 

network is required because of the high 

number of nodes. The distributed state 
estimation, carrying out state estimation 

process in the power plant and substation 

respectively, uploading the results and 

circuit breaker actual status to the control 
center, then conducting the overall system 

state estimation, as shown in Fig.1. Our ML 

engine can create virtual nodes capable of 

providing estimates until the physical 

equipment is installed. Further, when they 

are installed and network observability is 

achieved, the ML algorithm can offer 

redundancy and reliability of the solution in 
the case of failures in measurement devices. 

For generator block, the input variables 

including the previous estimation result 

(such as the absolute rotor angle 0, electrical 
angular velocity wand the transient 

electromotive force) and the PMU direct 

measurement (such as the generator terminal 

voltage Ut and phase angle Ot).  
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
Fig 1: FRAME WORK OF PHASOR 

MEASUREMENTS ESTIMATION ASED 
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As can be seen in Figure (1) phasor 

measurements are initially pre-processed. In 

this step, pre-processing techniques such as 

data interpolation for missing data or filters 
for noisy measurements can be used. For 

evaluation purposes, we extract an 

intersection of timestamps where data from 

all the nodes is available. This can be 
utilized at the training phase only where 

synchronized data is required to train such a 

framework. This step results in a processed 

data of nodes within a network with 
measurements from the same timestamps. 

This data is then used for establishing 

features to train for estimating target 

variables. In our feature representation 
stage, synchronized raw measurements are 

directly used with minimal addition of extra 

features. Due to this, the feature extraction 

stage is significantly faster than traditional 
approaches where several statistical or 

geometric features are extracted over a time 

window of measurements. They also have a 

significant limitation for this application as 
the output target in such scenarios is an 

aggregated estimate whereas the proposed 

system has the capability of producing 

estimates for a given time stamp based on 
the real direct measurements.  

 

Feature data from the previous step is then 

used to train individual models for separate 
target variables. In this work, we utilize a 

supervised machine learning framework in 

which labeled data is provided in the form of 

true measurements at the training stage. In 
particular, we use regression models that are 

appropriate for estimating numeric 

measurements (as opposed to using 

classification models in which the target is 
categorical in nature). 

a) Generalized Linear Model (GLM):  
Input features f are used to fit GLMs for 

estimating the target data individually. The 

GLM model assigns coefficients to each of 

the input feature in the form of a linear 

equation capable of estimating the target 

variable. This linear model is of the form: 𝑦𝑝𝑝~1 + [𝑓𝑟1𝑘1 + 𝑓𝑟1𝑘2 + ⋯ + 𝑓𝑅𝐾] ---- (1) 

Where, 𝑀 = {𝑘1, 𝑘2, ⋯ , 𝐾}, 𝑁 ={𝑛1 , 𝑛2 , ⋯ , 𝐿}, q ∈ M, p ∈ N, 𝑟 ={{𝑟1, 𝑟2, ⋯ , 𝑅}: 𝑟 ∈ 𝑁 𝑎𝑛𝑑 𝑟 ∉ 𝑝} 

b) Neural Network (NN): We also use the 

same set of input features to train multiple 
Neural Networks for all of the target 

variables. In particular, we use Bayesian 

regularization for training the models with 

100 nodes. 
 

After the data uploading process, the 

generator-network interface will be used to 

convert the generator DSE result to the 
pseudo measurement of network node 

voltage phasors (from d-p to x-y axes). 

Then, combined the generated pseudo 

measurement error variance, those will 
finally contribute to the system side linear 

DSE. Similarly for the substation block, the 

PMU measurement including the node 

voltage, phasor current flowing through the 
circuit-breaker, input and output line current 

of the substation are taken as an input (with 

redundancy) for the following substation 
state estimation with related boundary 

conditions. The output of the node voltage 

phasor, the circuit-breaker status, and the 

estimation error will be up loaded to the 
dispatch center for the use of network 

topology analysis and further overall system 

DSE. The system level DSE starts with the 

initial network topology analysis, the 
integration of the substation state estimation 

result and the generator DSE result through 

the generator-network interface. When the 

network node voltage estimation error 
variance (estimation error propagate from 

local to the system level) is derived, the 

weighted Linear Least Squares method is 
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applicable to carry on the system level DSE 

(because the 2 measurement for the system 

level DSE only including the node voltage 

and branch current vectors). 

IV. RESULTS  
The IEEE 13-bus testing system as shown in 

Fig.2 is used for the verification of the DSE 

for generators considering the machine 
learning approach and the entire system 

respectively. Node 1 is set to be the slack 

bus. Syncronised voltage phasor 

measurements are collected using PMUs 
installed. Apart from the loads, the feeder 

connects photovoltaic (PV) panels and a co-

generation unit therefore reverse power flow 

is common. The feeders are part of a new 
strong network with underground cabling. 

The PMUs take 3 phase measurements from 

the secondary side of the 20/0.4kV 

transformers. The measurements are sent 
securely to a Mongodb database and form 

part of the input of a distribution state 

estimation application developed. The 

proposed framework is evaluated using the 
nodes within the same network which are 

filtered out and an intersection of 

timestamps is established. 

 
Fig. 2: IEEE 14 BUS SYSTEMS 

 

 
(a) Phase angle 

 
(b) At node B8 for the system 

Fig. 3: THE STATE ESTIMATION RESULT OF 

VOLTAGE AMPLITUDE 

As can be seen in Fig.4, the areas including 
the nodes directly connected to the 

transformers and the bus bars on the 

transmission lines (node B5, B7, B9) are 

regarded as substations. Undertaking the 
DSE process at the generators and 

substations respectively, the system level 

DSE then can be progressed with their 
converted pseudo measurements and 

measurement error variances based on the 

weighted Linear Least Squares method. 

Taking node B8 as an example, the DSE 
result about the voltage amplitude and phase 

angle at node B8 are shown in Fig.3. Also, 

the estimation variance of voltage amplitude 

and angles at each bus is all under the value 
of 0.15e-6 p.u. and 0.4ge-6 rads 

respectively. Those above indicate that the 

applied power system distributed DSE can 
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remove the random error effectively from 

the PMU measurement and obtain accurate 

estimation value of node voltage. 

 
(a) Voltage Estimation 

 

 
(b)  Phase Estimation 

Fig, 4: ESTIMATION RESULTS USING GLM 
AND NN REGRESSION MODELS AT B8 NODE 

Figure 4 (a) shows the voltage estimation 

results using both GLM and NN. Baseline of 

2.30V is used. It can be seen that in all 

cases, the estimation results have low errors 
compared against the baseline. In general 

GLM estimation performs better compared 

against the NN estimation. Similarly in 

Figure 4 (b), phase estimation results are 
shown using both GLM and NN. A baseline 

of 10mrad is used. In this case, GLM 

outperforms both the baseline and the NN 

estimation results. NN estimation on average 
has a higher error rate compared against the 

baseline. Based on these results, it can be 

inferred that a certain linear relationship 

exists between phasor measurements from 
different nodes and therefore can be more 

accurately modeled using a linear model. 

However, with more training data and 

higher complexity neural networks (such as 

deep learning methods), these results can 

further be improved. 

 
V. CONCLUSION 

The framework for the dynamic state 

estimation of the overall power system 

proposed in this paper is based on the 
generator-network interface, converting the 

generator DSE result into the error variance 

about the network node voltage  pseudo 

measurement, leading to build to system 
estimation method involving the generator 

dynamic constraint, and as a result, to 

improve the accuracy of the node voltage 

vector state estimation of the network. The 
generator DSE proposed in this paper is 

based on the machine learning algorithm, 

considered machine learning to estimate 

synchronized phasor measurements. The 
simulation results for the generator DSE 

considering the machine learning and 

network node voltage vector estimation 

indicate the improvement of the state 
estimation accuracy for the generator and 

the network respectively. In particular, 

GLMs performed better than the NN model 

and the baseline. The estimation error 
decreased with the increase in the total 

number of nodes considered for training, 

however we found that the rate of decrease 

is dependent on the type of measurement.  
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