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ABSTRACT: Decimal X × Y multiplication is a complex operation, where intermediate partial 

products (IPPs) are commonly selected from a set of pre-computed radix-10 X multiples. Some 

works require only [0, 5] × X via recoding digits of Y to one-hot representation of signed digits 

in [−5, 5]. This reduces the selection logic at the cost of one extra IPP. Two’s complement 

signed-digit (TCSD) encoding is often used to represent IPPs, where dynamic negation (via one 

XOR per bit of X multiples) is required for the recoded digits of Y in [−5, −1]. In this work, 
despite generation of 17 IPPs, for 16-digit operands, we manage to start the partial product 

reduction (PPR) with 16 IPPs that enhance the VLSI regularity. Moreover, we expected to save 

negating XORs via representing pre-computed multiples by sign-magnitude signed-digit 

(SMSD) encoding. For the first-level PPR, we devise an efficient Ladner Fischer adder, with two 

SMSD input numbers, whose sum is represented with TCSD encoding. Expected results shows 

that some performance improvement over previous relevant designs. 

 

Keywords: Radix-10 multiplier, redundant representation, sign-magnitude signed digits 

(SMSDs), VLSI design 

 

I.INTRODUCTION 

Decimal arithmetic hardware is highly 

demanded for fast processing of decimal 

data in monetary, Web-based, and human 

interactive applications. Fast radix-10 

multiplication, in particular, can be achieved 

via parallel partial product generation (PPG) 

and partial product reduction (PPR), which 

is, however, highly area consuming in VLSI 

implementations. Thus, it is desired for 

lowering the silicon cost, while keeping the 

high speed of parallel realization. Let P = X 

× Y represent an n × n decimal 

multiplication, where multiplicand X,  

 

multiplier Y , and product P are normal 

radix-10 numbers with digits in [0, 9]. Such 

digits are generally represented through 

binary-coded decimal (BCD) encoding. 

However, intermediate partial products 

(IPPs) are represented through a diversity of 

often redundant decimal digit sets and 

encodings carry-save (CS) overloaded 

decimal [−7, 7] signed digit (SD)  double 4, 

2, 2, 1 and [−8, 8] SD. 

 

The choice of alternative IPP representations 

is influential on the PPG, which is of 

particular importance in decimal 

multiplication from two points of view: one 

is fast and low cost generation of IPPs and 

the other is its impact on representation of 

IPPs, which is influential on PPR efficiency. 

Straightforward PPG via BCD digit-by-digit 

multiplication is slow, expensive, and leads 
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to n double-BCD IPPs for n×n 

multiplication (i.e., 2n BCD numbers to be 

added). However, the work of recodes both 

the multiplier and multiplicand to sign 

magnitude signed digit (SMSD) 

representation and uses a more efficient 3-b 

by 3-b PPG. Nevertheless, following a long 

standing practice most PPG schemes use 

precomputed multiples of multiplicand X (or 

X multiples). Precomputation of the 

complete set0, 1, . . . 9} × X, as normal BCD 

numbers, and the subsequent selection are 

also slow and costly. 

 

A common remedial technique is to use a 

smaller less costly set that can be achieved 

via fast carry-free manipulation (e.g., 0, 1, 2, 

4, 5} × X) at the cost of doubling the count 

of BCD numbers to be added in PPR; that is, 

n double-BCD IPPs are generated, such as 

3X = (2X, X), 7X = (5X, 2X), or 9X = (5X, 

4X). The recoding of multiplier’s digits, in 

some relevant works leads to a carry bit 

besides the n recoded digits of the 

multiplier, which will generate an extra 

partial product.  

 

This is particularly problematic for parallel 

multiplication with n = 16 (i.e., number of 

significand’s decimal digits according to 

IEEE standard size of single precision radix-

10 floating-point numbers), where the 17 

generated partial products require five PPR 

levels instead of four (i.e., log2 16). 

Furthermore, they dynamically negate 

positive multiples based on the sign of 

multiplier’s recoded digits. This technique 

reduces the area and delay of logic that 

selects the X multiples at the cost of 

conditionally negating the selected 

multiples, which requires at least 4n2 XOR 

gates for n×n multiplication. 

 

II.EXISTED SYSTEM 

The least significant product digit is 

obtained as an SMSD digit, which is directly 

converted to BCD. The next product digit 

that is available as a TCSD, is likewise 

converted. Similar is the case for TCSDs 

D3–D2 and D7–D4 that are delivered 

respectively. There are two TCSD digits. 

We do not apply another PPR level (i.e., 

TCSD+TCSD-to-TCSD conversion). 

Instead, we can think of a TCSD+TCSD-to-

BCD converter that can be realized with the 

help of a parallel prefix adder.  

 

 
Fig 1. Existed system 

 

A decimal borrow is carried over to the 

more significant decimal position that 

causes borrow propagation. To avoid such 

slow borrow propagation, we employ a 

parallel prefix borrow generator that uses 

decimal borrow propagate and generate 

signals π = (W = 0) and γ = (W < 0) = w4, 

respectively. These borrow signals are 
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generated via a four level Kogge–Stone 

(KS) parallel prefix network with 15 input 

pairs (π, γ ), and borrow-in b8 from part 1. 

 

To avoid 4-b borrow propagation within 

each digit, we also concurrently compute, 

where one of is to be selected by borrow bin 

that yields the product digit P. Fig. 1 depicts 

the logical blocks that correspond to 

different stages. 

 

 The π and γ signals for decimal positions 

are produced. Regarding positions where 

there exists only one [−7, 7] TCSD per 

position, γ is equal to the NOT of sign bit of 

the corresponding TCSD, and π can be 

derived as the NOR of all four bits (sign bit 

inverted). We devise a special three-level 

compound KS-like parallel prefix network 

to generate all borrows b0(b−1) for decimal 

positions that correspond to the cases where 

b23 is 0 (1). Kogge stone adder depicts the 

required logic which represent the group 

(generate, propagate) signals. These borrows 

are utilized to form two BCD products 

respectively, where one is selected.  

 

III.PROPOSED SYSTEM 

Let P = X × Y represent an n × n decimal 

multiplication, where multiplicand X, 

multiplier Y , and product P are normal 

radix-10 numbers with digits in [0, 9]. Such 

digits are commonly represented via binary-

coded decimal (BCD) encoding. However, 

intermediate partial products (IPPs) are 

represented. The recoding of multiplier’s 

digits leads to a carry bit besides the n 

recoded digits of the multiplier, which will 

generate an extra partial product.  

 

In this proposed multiplier, we use Ladner-

Fischer adder which is flexible to speed up 

the binary addition and the structure looks 

like tree structure for the high performance 

of arithmetic operations. In ripple carry 

adders each bit have to wait for the last bit 

operation. In parallel prefix adders instead 

of waiting for the carry propagation of the 

first addition, the idea here is to overlap the 

carry propagation of the first addition with 

the computation in the second addition, and 

so forth, since repetitive additions will be 

performed by a multioperand adder. 

 

 
Fig 2 . Proposed system 

 

The construction of efficient Ladner-Fischer 

adder consists of three stages. They are pre-

processing stage, carry generation stage, 

post-processing stage. 

 

A. Pre-Processing Stage: In the pre-

processing stage, generate and propagate are 

from each pair of inputs. The propagate 

perform “XOR” operation of input bits and 

generate operation “AND” operation of 

input bits. The propagate (Pi) and generate 

(Gi) are shown in below equations 1 and 2. 
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(1) 

(2) 

 

B. Carry Generation Stage: In this stage, 

carry is generated for each bit called as carry 

generate (Cg). The carry propagate and 

carry generate is generated for the further 

operation but final cell present in the each 

bit operation gives carry. The last bit carry 

will help to produce sum of the next bit 

simultaneously till the last bit. The carry 

generate and carry propagate are given in 

below equations 3 and 4. 

(3) 

(4) 

The above carry propagate Cp and carry 

generation Cg in equations 3 & 4 is black 

cell and the below shown carry generation in 

equation 5 is gray cell. The carry propagate 

is generated for the further operation but 

final cell present in the each bit operation 

gives carry. The last bit carry will help to 

produce sum of the next bit simultaneously 

till the last bit. This carry is used for the next 

bit sum operation, the carry generate is 

given in below equations 5. 

(5) 

C. Post-processing stage: It is the final 

stage of an efficient Ladner-Fischer adder, 

the carry of a first bit is XORed with the 

next bit of propagates then the output is 

given as sum and it is shown in equation 6. 

(6) 

It is used for two sixteen bit addition 

operations and each bit carry is undergoes 

post-processing stage with propagate, gives 

the final sum.  The first input bits goes under 

pre-processing stage and it will produce 

propagate and generate. These propagates 

and generates undergoes carry generation 

stage produces carry generates and carry 

propagates, these undergoes post-processing 

stage and gives final sum. The step by step 

process of efficient Ladner-Fischer adder is 

shown in Fig 3.  

In Efficient Ladner-Fischer adder, black cell 

operates three gates and gray cell operates 

two gates. The gray cell reduces the delay 

and memory because it operates only two 

gates. The Ladner fischer adder is design 

with the both black and gray cells. By using 

gray cell operations at the last stage of 

proposed adder gives a enormous dropping 

delay and memory used.  

 

 
Fig 3: Flow chart for Efficient Ladner-

Fischer adder. 

 

The Ladner fischer adder is shown in fig 4 

which increases the speed and decreases the 

memory for the operation of 8-bit addition. 
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The input bits Ai and Bi concentrates on 

generate and propagate by XOR and AND 

operations. These propagates and generates 

undergoes the operations of black cell and 

gray cell and gives the carry Ci. That carry 

is XORed with the propagate of next bit, 

that gives sum. 

 

 
Fig 4: 16-Bit Efficient Ladner-Fischer 

Adder 

 

The architecture of 16-bit Efficient Ladner-

Fischer adder is shown in Fig 4. The logical 

circuit is using multiple adders to find the 

sum of N-bit numbers. Each addition 

operation has a carry input (Cin) which is 

the previous bit carry output (Cout). 

 

IV.RESULTS 

 
Fig 5: RTL Schematic 

 
Fig 6: OUTPUT 

 

V.CONCLUSION 

We propose a parallel 16 × 16 multiplier, 

where 17 partial products are generated with 

representation. The exclusively employed 

representation of partial products saves more 

than XOR gates in comparison with other 

16×16 multipliers with dynamic negation of 

partial products. The reason is that sign 

magnitude addition conceptually entails 

separate consideration of four sign 

combinations. To take advantage of early 

signal arrivals, conversion of the four least 

significant digits to starts in the middle of 

PPA. A Ladner Fischer adder produces sum 

for the nine most significant digits. A special 

parallel prefix decimal carry select adder 

adds up the middle digits and produces sum 
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digits and a borrow that selects one of the 

two sums of the most significant part. The 

proposed muliplier occupies less area than 

existed multiplier. 
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