

Volume 07, Issue 04, April 2018. ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2018 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 18
th

 APRIL 2018. Link :

http://www.ijiemr.org/downloads.php?vol=Volume-7&issue=ISSUE-4

Title: VLSI IMPLEMENTATION OF 16 × 16-DIGIT PARALLEL MULTIPLIER

Volume o7, Issue 04, Pages: 57 – 62 .

Paper Authors

Y. SRILAKSHMI, T. LILLY PRASANTHI

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar

Code

Volume 07 Issue o4 April 2018 ISSN: 2456 – 5083 Page 57

VLSI IMPLEMENTATION OF 16 × 16-DIGIT PARALLEL MULTIPLIER

1Y. SRILAKSHMI, 2T. LILLY PRASANTHI

 M.Tech – Scholar, Dept of E.C.E, Universal College of Eng & Tech, GUNTUR

, Assistant Professor, Dept of E.C.E, Universal College of Eng & Tech, GUNTUR

ABSTRACT: Decimal X × Y multiplication is a complex operation, where intermediate partial

products (IPPs) are commonly selected from a set of pre-computed radix-10 X multiples. Some

works require only [0, 5] × X via recoding digits of Y to one-hot representation of signed digits

in [−5, 5]. This reduces the selection logic at the cost of one extra IPP. Two’s complement

signed-digit (TCSD) encoding is often used to represent IPPs, where dynamic negation (via one

XOR per bit of X multiples) is required for the recoded digits of Y in [−5, −1]. In this work,
despite generation of 17 IPPs, for 16-digit operands, we manage to start the partial product

reduction (PPR) with 16 IPPs that enhance the VLSI regularity. Moreover, we expected to save

negating XORs via representing pre-computed multiples by sign-magnitude signed-digit

(SMSD) encoding. For the first-level PPR, we devise an efficient Ladner Fischer adder, with two

SMSD input numbers, whose sum is represented with TCSD encoding. Expected results shows

that some performance improvement over previous relevant designs.

Keywords: Radix-10 multiplier, redundant representation, sign-magnitude signed digits

(SMSDs), VLSI design

I.INTRODUCTION

Decimal arithmetic hardware is highly

demanded for fast processing of decimal

data in monetary, Web-based, and human

interactive applications. Fast radix-10

multiplication, in particular, can be achieved

via parallel partial product generation (PPG)

and partial product reduction (PPR), which

is, however, highly area consuming in VLSI

implementations. Thus, it is desired for

lowering the silicon cost, while keeping the

high speed of parallel realization. Let P = X

× Y represent an n × n decimal

multiplication, where multiplicand X,

multiplier Y , and product P are normal

radix-10 numbers with digits in [0, 9]. Such

digits are generally represented through

binary-coded decimal (BCD) encoding.

However, intermediate partial products

(IPPs) are represented through a diversity of

often redundant decimal digit sets and

encodings carry-save (CS) overloaded

decimal [−7, 7] signed digit (SD) double 4,

2, 2, 1 and [−8, 8] SD.

The choice of alternative IPP representations

is influential on the PPG, which is of

particular importance in decimal

multiplication from two points of view: one

is fast and low cost generation of IPPs and

the other is its impact on representation of

IPPs, which is influential on PPR efficiency.

Straightforward PPG via BCD digit-by-digit

multiplication is slow, expensive, and leads

Volume 07 Issue o4 April 2018 ISSN: 2456 – 5083 Page 58

to n double-BCD IPPs for n×n

multiplication (i.e., 2n BCD numbers to be

added). However, the work of recodes both

the multiplier and multiplicand to sign

magnitude signed digit (SMSD)

representation and uses a more efficient 3-b

by 3-b PPG. Nevertheless, following a long

standing practice most PPG schemes use

precomputed multiples of multiplicand X (or

X multiples). Precomputation of the

complete set0, 1, . . . 9} × X, as normal BCD

numbers, and the subsequent selection are

also slow and costly.

A common remedial technique is to use a

smaller less costly set that can be achieved

via fast carry-free manipulation (e.g., 0, 1, 2,

4, 5} × X) at the cost of doubling the count

of BCD numbers to be added in PPR; that is,

n double-BCD IPPs are generated, such as

3X = (2X, X), 7X = (5X, 2X), or 9X = (5X,

4X). The recoding of multiplier’s digits, in

some relevant works leads to a carry bit

besides the n recoded digits of the

multiplier, which will generate an extra

partial product.

This is particularly problematic for parallel

multiplication with n = 16 (i.e., number of

significand’s decimal digits according to

IEEE standard size of single precision radix-

10 floating-point numbers), where the 17

generated partial products require five PPR

levels instead of four (i.e., log2 16).

Furthermore, they dynamically negate

positive multiples based on the sign of

multiplier’s recoded digits. This technique

reduces the area and delay of logic that

selects the X multiples at the cost of

conditionally negating the selected

multiples, which requires at least 4n2 XOR

gates for n×n multiplication.

II.EXISTED SYSTEM

The least significant product digit is

obtained as an SMSD digit, which is directly

converted to BCD. The next product digit

that is available as a TCSD, is likewise

converted. Similar is the case for TCSDs

D3–D2 and D7–D4 that are delivered

respectively. There are two TCSD digits.

We do not apply another PPR level (i.e.,

TCSD+TCSD-to-TCSD conversion).

Instead, we can think of a TCSD+TCSD-to-

BCD converter that can be realized with the

help of a parallel prefix adder.

Fig 1. Existed system

A decimal borrow is carried over to the

more significant decimal position that

causes borrow propagation. To avoid such

slow borrow propagation, we employ a

parallel prefix borrow generator that uses

decimal borrow propagate and generate

signals π = (W = 0) and γ = (W < 0) = w4,

respectively. These borrow signals are

Volume 07 Issue o4 April 2018 ISSN: 2456 – 5083 Page 59

generated via a four level Kogge–Stone

(KS) parallel prefix network with 15 input

pairs (π, γ), and borrow-in b8 from part 1.

To avoid 4-b borrow propagation within

each digit, we also concurrently compute,

where one of is to be selected by borrow bin

that yields the product digit P. Fig. 1 depicts

the logical blocks that correspond to

different stages.

 The π and γ signals for decimal positions

are produced. Regarding positions where

there exists only one [−7, 7] TCSD per

position, γ is equal to the NOT of sign bit of

the corresponding TCSD, and π can be

derived as the NOR of all four bits (sign bit

inverted). We devise a special three-level

compound KS-like parallel prefix network

to generate all borrows b0(b−1) for decimal

positions that correspond to the cases where

b23 is 0 (1). Kogge stone adder depicts the

required logic which represent the group

(generate, propagate) signals. These borrows

are utilized to form two BCD products

respectively, where one is selected.

III.PROPOSED SYSTEM

Let P = X × Y represent an n × n decimal

multiplication, where multiplicand X,

multiplier Y , and product P are normal

radix-10 numbers with digits in [0, 9]. Such

digits are commonly represented via binary-

coded decimal (BCD) encoding. However,

intermediate partial products (IPPs) are

represented. The recoding of multiplier’s

digits leads to a carry bit besides the n

recoded digits of the multiplier, which will

generate an extra partial product.

In this proposed multiplier, we use Ladner-

Fischer adder which is flexible to speed up

the binary addition and the structure looks

like tree structure for the high performance

of arithmetic operations. In ripple carry

adders each bit have to wait for the last bit

operation. In parallel prefix adders instead

of waiting for the carry propagation of the

first addition, the idea here is to overlap the

carry propagation of the first addition with

the computation in the second addition, and

so forth, since repetitive additions will be

performed by a multioperand adder.

Fig 2 . Proposed system

The construction of efficient Ladner-Fischer

adder consists of three stages. They are pre-

processing stage, carry generation stage,

post-processing stage.

A. Pre-Processing Stage: In the pre-

processing stage, generate and propagate are

from each pair of inputs. The propagate

perform “XOR” operation of input bits and

generate operation “AND” operation of

input bits. The propagate (Pi) and generate

(Gi) are shown in below equations 1 and 2.

Volume 07 Issue o4 April 2018 ISSN: 2456 – 5083 Page 60

(1)

(2)

B. Carry Generation Stage: In this stage,

carry is generated for each bit called as carry

generate (Cg). The carry propagate and

carry generate is generated for the further

operation but final cell present in the each

bit operation gives carry. The last bit carry

will help to produce sum of the next bit

simultaneously till the last bit. The carry

generate and carry propagate are given in

below equations 3 and 4.

(3)

(4)

The above carry propagate Cp and carry

generation Cg in equations 3 & 4 is black

cell and the below shown carry generation in

equation 5 is gray cell. The carry propagate

is generated for the further operation but

final cell present in the each bit operation

gives carry. The last bit carry will help to

produce sum of the next bit simultaneously

till the last bit. This carry is used for the next

bit sum operation, the carry generate is

given in below equations 5.

(5)

C. Post-processing stage: It is the final

stage of an efficient Ladner-Fischer adder,

the carry of a first bit is XORed with the

next bit of propagates then the output is

given as sum and it is shown in equation 6.

(6)

It is used for two sixteen bit addition

operations and each bit carry is undergoes

post-processing stage with propagate, gives

the final sum. The first input bits goes under

pre-processing stage and it will produce

propagate and generate. These propagates

and generates undergoes carry generation

stage produces carry generates and carry

propagates, these undergoes post-processing

stage and gives final sum. The step by step

process of efficient Ladner-Fischer adder is

shown in Fig 3.

In Efficient Ladner-Fischer adder, black cell

operates three gates and gray cell operates

two gates. The gray cell reduces the delay

and memory because it operates only two

gates. The Ladner fischer adder is design

with the both black and gray cells. By using

gray cell operations at the last stage of

proposed adder gives a enormous dropping

delay and memory used.

Fig 3: Flow chart for Efficient Ladner-

Fischer adder.

The Ladner fischer adder is shown in fig 4

which increases the speed and decreases the

memory for the operation of 8-bit addition.

Volume 07 Issue o4 April 2018 ISSN: 2456 – 5083 Page 61

The input bits Ai and Bi concentrates on

generate and propagate by XOR and AND

operations. These propagates and generates

undergoes the operations of black cell and

gray cell and gives the carry Ci. That carry

is XORed with the propagate of next bit,

that gives sum.

Fig 4: 16-Bit Efficient Ladner-Fischer

Adder

The architecture of 16-bit Efficient Ladner-

Fischer adder is shown in Fig 4. The logical

circuit is using multiple adders to find the

sum of N-bit numbers. Each addition

operation has a carry input (Cin) which is

the previous bit carry output (Cout).

IV.RESULTS

Fig 5: RTL Schematic

Fig 6: OUTPUT

V.CONCLUSION

We propose a parallel 16 × 16 multiplier,

where 17 partial products are generated with

representation. The exclusively employed

representation of partial products saves more

than XOR gates in comparison with other

16×16 multipliers with dynamic negation of

partial products. The reason is that sign

magnitude addition conceptually entails

separate consideration of four sign

combinations. To take advantage of early

signal arrivals, conversion of the four least

significant digits to starts in the middle of

PPA. A Ladner Fischer adder produces sum

for the nine most significant digits. A special

parallel prefix decimal carry select adder

adds up the middle digits and produces sum

Volume 07 Issue o4 April 2018 ISSN: 2456 – 5083 Page 62

digits and a borrow that selects one of the

two sums of the most significant part. The

proposed muliplier occupies less area than

existed multiplier.

VI.REFERENCES

[1] M. F. Cowlishaw, “Decimal floating-

point: Algorism for computers,” in Proc.

16th IEEE Symp. Comput. Arithmetic, Jun.

2003, pp. 104–111.

[2] T. Lang and A. Nannarelli, “A radix-10

combinational multiplier,” in Proc. 40th

Asilomar Conf. Signals, Syst., Comput.,

Oct./Nov. 2006, pp. 313–317.

[3] R. D. Kenney, M. J. Schulte, and M. A.

Erle, “A high-frequency decimal multiplier,”

in Proc. IEEE Int. Conf. Comput. Design

(ICCD), Oct. 2004, pp. 26–29.

[4] A. Vazquez, E. Antelo, and J. D.

Bruguera, “Fast radix-10 multiplication

using redundant BCD codes,” IEEE Trans.

Comput., vol. 63, no. 8, pp. 1902–1914,

Aug. 2014.

[5] S. Gorgin and G. Jaberipur, “Fully

redundant decimal arithmetic,” in Proc. 19th

IEEE Symp. Comput. Arithmetic, Jun. 2009,

pp. 145–152.

[6] A. Vazquez, E. Antelo, and P.

Montuschi, “Improved design of high

performance parallel decimal multipliers,”

IEEE Trans. Comput., vol. 59, no. 5, pp.

679–693, May 2010.

[7] L. Han and S.-B. Ko, “High-speed

parallel decimal multiplication with

redundant internal encodings,” IEEE Trans.

Comput., vol. 62, no. 5, pp. 956–968, May

2013, doi: 10.1109/TC.2012.35.

[8] G. Jaberipur and A. Kaivani, “Binary-

coded decimal digit multipliers,” IET

Comput. Digit. Techn., vol. 1, no. 4, pp.

377–381, 2007.

[9] R. K. James, T. K. Shahana, K. P. Jacob,

and S. Sasi, “Decimal multiplication using

compact BCD multiplier,” in Proc. Int.

Conf. Electron. Design, 2008, pp. 1–6.

[10] M. A. Erle, E. M. Schwarz, and M. J.

Schulte, “Decimal multiplication with

efficient partial product generation,”

