

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2018 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 23
rd

 February 2018. Link :

http://www.ijiemr.org/downloads.php?vol=Volume-7&issue=ISSUE-2

Title: Multiple Clock gating Schemes for Fused-MAC for Floating-Point Units.

 Volume 07, Issue 02, Page No: 635 – 646.

Paper Authors

*RAYADU LAVANYA, S.DEVA KARUN.

* Dept of ECE, Kakinada Institute of Engineering & Technology.

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar

Code

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 635

MULTIPLE CLOCK GATING SCHEMES FOR FUSED-MAC FOR FLOATING-POINT

UNITS

*RAYADU LAVANYA, **S.DEVA KARUN

*PG Scholar, Vlsd, Dept of ECE, Kakinada Institute of Engineering & Technology For Women,

Korangi, A.P.

**Assistant Professor, Dept of ECE, Kakinada Institute of Engineering & Technology For Women ,

Korangi, A.P.

ABSTRACT:

The paper introduces fine-grain clock gating schemesfor fused MAC-type floating-point units (FPU).

Theclock gating is based on instruction type, precision andoperand values. The presented schemes

focus on reducingthe power at peak performance, where each FPU stage isused in nearly every cycle

and conventional schemes havelittle impact on the power consumption. Depending on theinstruction

mix, the schemes allow to turn off 18% to 74%of the register bits. Even for the worst case instruction

18%to 37% of the FPU are shut down depending on the dataPatterns.

OVERVIEW:

Considering, the new floating-point standard

IEEE 754-2008 [8] fused multiply-add (FMA)

A·C+B is introduced as mandatory operation.

The product is computed at full precision;

rounding only gets applied when adding

together product and addend. The first FMA-

type floating-point unit (FPU) was introduced

in 1990 [11] and since then many designs have

been described in the literature [6, 9, 10, 12,

15]. The main focus of all those design was to

make the FPUs faster, but very little has been

said about how to make such an FPU power-

efficient. In the last decade, the power

consumption and the effort for cooling the

processors and computer systems have become

a major issue. In the embedded market and

game console market, designers are fighting for

every milli-Watt [16], and in the server

business a big focus is put on green IT [7].

Even supercomputers are not just ranked by

their FPU performance; the top-500 lists now

also takes the power efficiency into account [5,

17]. The most common way for saving power is

to shut-down pieces of the hardware when they

are not used. An effective approach for a

pipelined design is to clock gate register stages

that are idle [16].

This paper describes how this mechanism can

be applied to an FMA-type FPU, and that it is

possible to shut down parts of the FPU even

when the system is running at peak FPU

performance. After an overview of the structure

of an MAC design and its importance (Section

1.1) and in section 1.2 we provide the basic

block diagram of FMAC based FPU.

Now we introduce the concept of clock gating

(Section 1.2), we show how the standard clock

gating schemes can be applied to such an FPU

and which aspects need to be considered. We

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 636

then introduce new clock gating schemes into

FMA-type FPUs, as used in recent products.

Those schemes are instruction based, precision

based, and data based clock gating; Sections 2,

3 and 4 describe them in detail. For each of the

schemes it is shown what percentage of the

FPU can be shut down.

LITERATURE SURVEY:

1.1 Motivation

 Now days, the demand for the high speed

mobile wireless communications is rapidly

growing. The Multiplier-Accumulator (MAC)

operation is the key operation not only in DSP

applications but also in multimedia information

processing and various other applications. As

mentioned above, MAC unit consist of

multiplier, adder and register/accumulator.

 In this project, we used 64 bit modified

Wallace multiplier. The MAC inputs are

obtained from the memory location and given

to the multiplier block. This will be useful in 64

bit digital signal processor. The input which is

being fed from the memory location is 64 bit.

1.11.1 Objective of project

 A design of high performance 64 bit

Multiplier-and-Accumulator (MAC) is

implemented in this paper. MAC unit performs

important operation in many of the digital

signal processing (DSP) applications. The

multiplier is designed using modified Wallace

multiplier and the adder is done with carry save

adder. The total design is coded with Verilog-

HDL and the synthesis is done using Cadence

RTL complier using typical libraries of TSMC

O.18um technology. The total MAC unit

operates at 217 MHz The total power

dissipation is 177.732 mW.

1.11.2 Block Diagram

Fig 1.1Block diagram of MAC

1.12 Mac operation:

 The Multiplier-Accumulator (MAC)

operation is the key operation not only in DSP

applications but also in multimedia information

processing and various other applications. As

mentioned above, MAC unit consist of

multiplier, adder and register/accumulator. In

this paper, we used 64 bit modified Wallace

multiplier. The MAC inputs are obtained from

the memory location and given to the multiplier

block. This will be useful in 64 bit digital

signal processor. The input which is being fed

from the memory location is 64 bit. When the

input is given to the multiplier it starts

computing value for the given 64 bit input and

hence the output will be 128 bits. The

multiplier output is given as the input to carry

save adder which performs addition.

The function of the MAC unit is given by the

following equation

F = I PiQi

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 637

The output of carry save adder is 129 bit i.e.

one bit is for the carry (128bits+1 bit). Then,

the output is given to the accumulator register.

The accumulator register used in this design is

Parallel-In Parallel-Out (PIPO). Since the bits

are huge and also carry save adder produces all

the output values in parallel, PIPO register is

used where the input bits are taken in parallel

and output is taken in parallel. The output of

the accumulator register is taken out or fed

back as one of the input to the carry save adder.

As shown in fig 1.1 the basic architecture of

MAC unit.

1.2 FMA Type Floating-point Unit BASED

ON MAC DESIGN

Figure 1: Representing the FPU

Figure 1 illustrates the basic structure of a

state-of-theart, 6-cycle FMA-type FPU. The

aligner, multiplier, adder, normalizer and

rounder mainly operate on the mantissa of the

operands. The exponent and sign information is

processed in the exponent dataflow, which also

holds the FPU control. The operand registers

hold the operands; they also include logic for

pre-processing the operands, such as unpacking

the operands into sign, exponent and mantissa.

The multiplier computes the partial products

for A·C and compresses them into two product

vectors. In parallel, the aligner aligns the

mantissa of the addend to that of the product;

this requires very wide shifts. The adder then

computes the sum or absolute difference of the

two product vectors and of the aligned addend.

It also determines the number of leading zeros

in the adder result using leading-zero

anticipator logic (LZA). The normalizer then

shifts out the leading zeros and the rounder

rounds the intermediate result to the required

precision. As described in [14], it suffices to

use an aligned addendand intermediate results

which are 3 times as wide as the precision of

the operands plus a few extra bits. For double

precision operands, the product padded with

two bits at either side for rounding is 110 bits

wide, and the aligned addend with its 163 bits

sticks out 53 bits to the left of the product

(Figure 2). In order to save hardware, an adder

is used for the trailing 110 bits and an

incremented for the leading 53 bits. Both

include re-complement logic for subtraction.

The leading-zero-anticipator is only needed for

the trailing 110 bits. The position of a leading

one in the incremented part can be derived

from the aligner shift amount.

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 638

Figure 2: Representing Adder split for a

double-precision dataflow

Apart from FMA-type operations which

include A·C+B and derivate like A·C-B and -

A·C+B, FMA-type FPUs support various other

floating-point instruction types, such as add,

multiply, converts between integer and

floating-point formats, compare operations,

minimum and maximum function, and moves

with potential sign manipulation. It also

provides support for divide and square root. In

some implementations, the FPU is also used for

integer multiply and multiply-add operations.

In order to keep the FPU design simple and

small, all these instructions are mapped onto

the FMA dataflow and are executed as FMA

with some corrections. Multiply A·C, for

example, can be executed as A·C+0, and a

subtract A-B can be executed as A·1-B. For the

converts, the product exponent is forced to a

special value and a correction is applied to the

least-significant input bits of the adder.

Estimate instructions need special hardware

such as tables and reuse only small parts of the

FMA pipeline. Divide and square root

operations can be implemented as a series of

estimates and FMA operations.

Multiple floating-point precisions are supported

using an internal data format which is at least

as wide as the largest supported precision.

Input data are unpacked into the internal

format; the result is rounded and packed into

the desired result format. The packing and

unpacking is independent of the executed

instruction type. Thus, converts between

different floating-point precisions can be

treated as normalizing moves.

Figure 3:LCB with clock gating support

(conceptual)

For each circuit of a design, power simulation

tools can measure the switching power as a

function of data switching factor on its data

inputs (SF) and clock activity. Table 1 lists the

switching power data for the 2-cycle aligner

circuit of the presented FPU design; the

estimated leakage power for the aligner

contributes an additional 12 mW.

For this aligner circuit, there is a switching

power reduction by more than a factor of 300

between worst and best case. Within each row

and column an order of magnitude can be

gained. Even if there is no switching at the

inputs (SF=0), clock gating can reduce the

switching power by about a factor 30. With

high clock activity, the reduced switching

factor still contributes to a substantial power

saving.

Assuming peak performance, i.e., every stage

of the FPU is used in every cycle and an

optimistic switching factor of 30%, the

switching power is five times larger than the

leakage power. This indicates that adding

additional logic can be a net power reduction if

it enables to significantly increase the clock

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 639

gating. The sum of all registers controlled by

the same clock gating function is called clock

domain. Each LCB only accepts a single clock

gate signal. In other words, all register bits

connected to the same LCB are in the same

clock domain. Hence, increasing the number of

clock domains leads to an increasing number of

LCBs. Since LCBs use a significant amount of

power, the power improvement by splitting a

clock domain has to exceed the penalty

introduced by the additional LCB. For the

state-of-the-art CMOS SOI technology that is

used here, a clock domain should contain at

least 8 to 10 register bits.

Timing puts another constraint to clock gating.

As shown in Figure 3, the clock enable signals

for the LCB have to be stable before the clock

signal drops, to avoid glitches on the local

clock net. The circuits computing the clock

gating signals therefore have to be kept simple

or use signals which are precomputed in the

previous cycle.

The power consumption depends not only on

the implemented clock gating scheme, but also

on the data switching, chip technology and

register type. For the sake of simplicity, in this

paper we use the number of clocked register

bits as a measure for switching power.

1.3. Clock gating Schemes

Clock gating schemes used in previous designs

include unit based clock gating [4] and stage

based clock gating [1]. Unit based clock gating

turns off the functional units that do not

execute any instruction and stage based clock

gating turns off the pipeline stages that do not

hold a valid instruction. Unit based clock

gating [4] is targeted at functional units

consisting of several sub-units like integer units

consisting of adder, shifter, and logic unit. In an

FMA-type FPU, all instructions use the same

basic data path. Hence, with such a coarse-

grain clock gating scheme, the whole FPU is

either turned on or off and FPU switching

power is only saved when no FPU instruction is

in flight. Stage based clock gating [1] is a

refinement of the previous scheme. Rather than

whole units it activates each pipeline stage

separately; only stages with valid instruction

are active. This can also be applied to an FMA-

type FPU, and then saves power for idle FPU

cycles. This paper focuses on reducing the

power of heavily used FMA-type FPUs, where

each FPU stage is used in nearly every cycle. In

this scenario even stage based clock gating has

little impact on the FPU power consumption.

We therefore introduce three new clock gating

schemes that are implemented in addition to

stage based clock gating. Instruction based

clock gating [2] extends the idea of unit based

clock gating. For this, we partition the FPU

data path into blocks that can be turned off

independently. The borders of the blocks are

chosen carefully such that no side effects are

introduced. The details of instruction based

clock gating are discussed in Section 2.

In addition to the instruction type, the precision

of the inputs and the outputs of an instruction

can be used to reduce power. In a design that

supports single and double precision, some

blocks, e.g., parts of the multiplier, are not

needed to compute single-precision results.

Turning off blocks based on the precision of

inputs or outputs is called precision based clock

gating (Section 3). Section 4 describes data

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 640

based clock gating [2]. In addition to the

instruction type, this clock gating scheme also

looks at the input data to predict which parts of

the unit will not have any impact on the result

and can be turned off.

EXIISTING TECHNIQUES:

2. Instruction Based

Clock gating for instruction based clock gating,

the FPU is carefully partitioned into blocks that

can be turned off independently. Some clock

gating opportunities only arise if additional

logic is introduced. In these cases the cost of

the new logic has to be balanced with the

power reductions gained by clock gating.

2.1. Multiplier Bypass

In high-frequency FPU designs, the multiplier

is divided in two or more pipeline stages. That

requires a lot of staging registers to store

intermediate partial products and partial sums.

In the presented 6-cycle FPU, the intermediate

multiplier registers plus the operand register for

multiplicand C account for over 25% of all

register bits. Add-type instructions, for

example, only use the multiplier to pass the A

operand to the adder inputs by computing A·1.

This wastes a lot of power. In order to turn off

the intermediate registers of the multiplier, a

multiplier bypass [3] is added to the FPU

pipeline (Figure 4). This bypass can be used to

either pass the fraction of A to the multiplier

result or force the multiplier result to zero

while the multiplier itself is clock gated. Since

add-type instructions are not rare, the

opportunity to disable about 25% of the

registers bits leads to a considerable net power

saving.

2.2. Fixed-Point Result

Bypass the instructions returning integer

results, like float-to integer converts and integer

multiply-add, require a significantly different

post-processing of the intermediate adder result

compared to instructions with floating-point

results. Instead of normalization and rounding,

the integer results require saturation. For timing

reasons it is advantageous to create separate

data paths for the two result types and merge

the results in the final packing step (Figure 5).

Any given instruction uses only one of the data

paths and clock gatesthe other. In addition, the

LZA which controls the normalizer shift

amount can be clock gated for fixed-point

results. Normalizer and LZA account for 6% of

the registers and the fixed-point result logic for

2%.

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 641

2.3. Partial Adder Bypass

The logic used for the addition of product and

addend is split into an adder and an

incremented circuit (see figure 1). Some

instruction types need only one of these

circuits. Move-type instructions, for example,

need no addition at all; they can use the

incremented to pass the operand down to the

next pipeline stages. On the other hand,

instructions using the fixed-point result bypass,

only need the output of the adder; the

incremented part is not needed. In order to save

power it is therefore advantageous to activate

the adder (20% of the total register bits) and the

incremented (about 5% of the total register bits)

independently. The only interaction between

these circuits is the carry bit from the adder to

the incremented. Hence, the incremented can

be turned off without impacting the adder. In

order to turn off the adder and use only the

incremented, the carry needs to be forced to a

desired value. Also, instructions with floating-

point results must ensure that the normalizer

does not read data from a disabled adder or

incremented.

PROPOSED MODEL:

3. Precision Based Clock gating

The presented FPU pipeline supports double-

precision (DP) and single-precision (SP)

floating-point operations. Internally, all inputs

are extended to a format with sign, 13- bit

exponent, integer bit and 52-bit fraction. If the

result of an instruction is an SP number the

least significant bits of the adder and

normalizer result are only used for the sticky

bit computation. The sticky bit of the lower

adder half is computed by the LZA. The sticky

bit of the lower normalizer bits is pre-computed

during the normalization for timing reasons.

Hence, in case of an SP result, the lower half of

the adder and normalizer result must not be

computed. The latches only used to compute

the lower result half’s can be clock gated. Note

that this does not include the latches needed for

the carry network of the adder. When

converting SP inputs to the internal format, the

least significant bits of the operands are set to

zeros. Hence, the 9:2 reduction tree of the

multiplier that uses the least significant bits of

the C operand computes 0·A = 0. Instead of

computing this with the reduction tree, the

output of this tree is forced to zero and the

intermediate registers are turned off. Since the

lower half of the multiplier result is zero for SP

inputs, it is possible to compute the sticky bit of

the lower half of the adder result already in the

aligner. This would allow to clock gate the

lower part of the aligner output to the adder as

well as the lower part of the LZA (which

account for approximately 3.4% of the latches).

This optimization would need modifications to

the aligner sticky logic and the adder carry tree

and was not implemented in the design. Table 4

lists the clock domains that need to be activated

for floating-point multiply-add instructions

with different precision. The clock domains

MR, AD and NR are divided into subdomains

HI and LO, where the domain HI contains the

registers that are needed by any precision and

LO contains the registers that are only needed

for double-precision operations. The table

indicates that precision based clock gating

reduces the number of clocked register bits for

SP instructions by up to 11.9%. The precision

based clock gating in the multiplier canalso be

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 642

used for fixed-point multiply-add instructions.

Assuming that the fixed-point inputs are at

most 32 bits wide, the multiplication of two

inputs can be done without using the third 9:2

reduction tree. This reduces the clock activity

of fixed-point multiply-add instructions by

7.9%.

4. Data Based Clock gating

In a double-precision, FMA-type FPU, the

mantissa of the intermediate data is up to 163

bits wide. For floating-point instructions like

multiply-add, multiply, and add, it depends on

the operand values whether the full 163-bit

wide intermediate data are needed or whether

the operation can do with portions of the data

vectors. This section details how to detect these

data dependent cases early in the pipeline and

how this can be used to reduce the number of

clocked registers.

4.1. Special Inputs

If one of the inputs of an arithmetic operation is

a Nan or infinity, the result of the operation is

computed using logic in the incremented and

the Nan forwarding logic in the NN domain.

The normalizer is forced to select the output of

the incrementer. If none of the operands is a

Nan or infinity, the NN domain, accounting for

3.6% of the register bits, can be clock gated.

The logic in the NN domain is not needed if at

least one operand is infinity but no operand is a

Nan. However, differentiating infinities from

Nans requires a zero check on the fraction,

whereas detecting Nan or infinity just requires

an all-one check of the exponent. Turning off

the NN domain for infinity-only operands

would therefore increase the timing pressure on

the activate signal for the NN domain. Since

this case is assumed to be rare, it is not

considered worthwhile; Nan and infinity cases

are treated alike. For these cases, adder and

leading-zero-anticipator can be gated; that are

the domains AD and LZ which account for

about 24% of the register bits. A multiply-add

instruction where either the A or C operand is

zero is treated like a move and the

corresponding instruction based clock gating is

applied. Otherwise, if the B operand is zero, the

instruction is treated as a multiply. Similar

optimizations apply for the multiply and add

instruction types. Detection of zero operands

requires nearly the whole first cycle, unless this

information is already stored in the register file.

The presented FPU has no special information

in the register file. Thus, the zero operand

information is too late for controlling the gating

of the first cycle aligner and multiplier domains

AL and MR. In case of zero product, adder and

LZA are turned off (24% register bits), whereas

for zero addend the incremented domain is

gated (5% register bits).

4.2. Operand Alignment

If all inputs are finite, non-zero numbers, the

aligner shifts the addend fraction based on the

exponent difference of addend and product.

The aligned addend, which is the result of this

alignment shift, is partitioned into an

incremented part which is sent to the

incremented and an adder part which is sent to

the adder (Figure 2). The width of the aligned

addend is limited to 163 bits by special

handling of the big shift amounts. If the addend

is shifted out on the right, all bits shifted out are

collected in an aligner sticky bit. If the addend

is shifted out on the left, the shift amount is

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 643

ignored and the addend is forced into the

incremented part of the aligned addend [14].

Based on the position of the input addend

within the aligned addend, we distinguish three

cases: in only, add only, and overlap (Figure 7).

The case where the whole addend is placed in

the incremented part of the aligned addend is

called in only. Add only denotes the case where

the input addend is fully contained in the adder

part and the aligner sticky bit. The remaining

case is called overlap. The case information is

available in the middle of the second cycle, just

in time for controlling the clock gating of the

incremented and adder inputs.

In the addonly case, the incrementer part of the

aligned addend consists of all zeros. Thus, the

incrementer part of the addend does not

contribute to the sum or absolute difference of

product and aligned addend. The normalizer

only needs to consider the adder output and

normalize it based on the information provided

by the leading-zero-anticipator. For this case,

the incrementer domain IN can be turned off.

In the in only case, the addend is much larger

than the product. The final result is either

addend B or B ± up, depending on the effective

operation, on the rounding mode, and whether

the product is non-zero. The adder part is only

needed to provide the carry to the incremented

and to compute the sticky information for

rounding. Since the adder part of the aligned

addend consists of all zeros, the sticky bit is

one in case of a non-zero product, i.e., if neither

A nor C is zero. On the other hand, a carry

from the adder to the incremented is only

produced in case of an effective subtraction

with a zero product. Hence, both signals can be

derived directly from the operands without

using the adder or multiplier result. Thus, in the

in only case, adder and LZA can be turned off.

In the overlap case, both the incremented and

the adder are needed. However, since the

leading one of the result is in the incremented

part, the normalizer shift amount is derived

from the aligner shift amount; the leading zero

count of the adder result is not needed. The

normalizer shift amount is at most 53, and

therefore the lower half of the adder only

contributes to the sticky bit (similar to SP

results described in section 3). The sticky bit

information can be provided by the lower half

of the leading-zero-anticipator logic. Thus, the

lower half of the adder result computation

(excluding the carry tree which impacts the

upper half) and the upper half of the LZA can

be turned off.

Table 5 summarizes the impact of data based

clock gating for a double-precision multiply-

add instruction. Both the adder domain AD and

the leading zero anticipator domain LZ are split

up in an upper half HI and a lower half LO. In

the overlap case, data based clock gating

reduces the number of clocked registers by

8.3%. In the in only case, data based clock

gating reduces the number of clocked registers

even by 27.2%.

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 644

SIMULATION RESULTS:

1 Benefits

 The MAC unit operates completely

independent of the CPU

 It can process data separately and

thereby reduce CPU load.

 The application like optical

communication systems which is

based on DSP , require extremely

fast processing of huge amount of

digital data

Fig.(a) power dissipation

 Fig.(b) delay

Fig. (c) cell area

CONCLUSION:

Traditional clock gating approaches reduce

FPU power consumption if no instructions are

executed, or at best, reduce the power

consumption for the idle cycles between

subsequent instructions. In numerical

applications with highly optimized floating-

point routines these traditional clock gating

schemes are not efficient for the FPU. We have

developed new clock gating schemes that

address exactly this scenario, i.e., they save

power even if the FPU executes an instruction

every cycle. The schemes clock gate parts of

the FPU based on instruction type, precision,

and operand values. Table 6 lists for every

instruction type and precision the minimum and

maximum percentage of register bits that are

enabled if the three clockgating schemes are

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 645

applied. The percentage of active register bits is

a good indication for the switching power.

The table indicates that executing a workload in

single precision (SP) instead of double-

precision (DP) reduces the clock activity by up

to 9%. It further shows that for compare

operations 74% of the register bits can be

disabled. Floating-point additions can clock

gate at least 41% of the register bits and

floating-point multiply instructions at least

24%. Even double-precision floating-point

multiply-adds, which are the most energy

consuming instructions, can shut off between

18% and 27% of the register bits. For these

instructions, between 8% and 17% are disabled

by data based clock gating; the remaining 10%

are disabled by instruction based clock gating.

Note that for area and power efficient designs,

it is better to avoid extra hardware rather than

to clock gate it. The goal is therefore to map all

instructions efficiently on the FMA dataflow.

The fact that only 10% of all register bits are

never used for DP FMA operations is an

indicator for the efficiency of the overall FPU

design. In our case, extra hardware was spent

for the estimate dataflow, fixed-point saturation

logic, and the multiplier bypass. The latter was

introduced since it allows add-type instructions

to disable 25% of the FPU. Even in such an

optimized FPU design, our clock gating

schemes significantly reduce the switching

power.

REFERENCES

[1] C. M. Abernathy, G. Gervais, and R.

Hilgendorf. Method and apparatus for dynamic

power management in an execution unit using

pipeline wave flow control. United States

Patent 7,137,013, November 2006.

[2] S. H. Dhong, S. M. Mueller, and H.-J. Oh.

Power saving in FPU with gated power based

on opcodes and data. United States Patent

7,137,021, November 2006.

[3] S. H. Dhong, S. M. Mueller, H.-J. Oh, and

K. D. Tran. Power saving in a floating point

unit using a multiplier and aligner bypass.

United States Patent 7,058,830, June 2006. [4]

M. A. Filippo. Clock control of functional units

in an integrated circuit based on monitoring

unit signals to predict inactivity. United States

Patent 6,983,389, January 2006.

[5] Green500.org. The green500 list, June

2008. http://www.green500.org/lists.php. [6] T.

N. Hicks, R. E. Fry, and P. E. Harvey. Power2

floatingpoint unit: architecture and

implementation. IBM Journal of Research and

Development, 38(5):525–536, 1994.

[7] IBM. Green IT, 2008.

http://www.ibm.com/ibm/green/index.shtml.

http://www.ibm.com/ibm/green/index.shtml

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 Page 646

[8] IEEE Task P754. IEEE 754-2008, Standard

for FloatingPoint Arithmetic. Aug. 2008.

[9] R. M. Jessani and C. H. Olson. The

floating-point unit of the PowerPC 603e

microprocessor. IBM Journal of Research and

Development, 40(5):559–566, 1996.

[10] T. Lang and J. D. Bruguera. Floating-point

fused multiplyadd with reduced latency.

Computer Design, International Conference on,

0:145, 2002.

[11] R. K. Montoye, E. Hokenek, and S. L.

Runyon. Design of the IBM RISC System/6000

floating-point execution unit. IBM Journal of

Research and Development, 34(1):59–70, 1990.

[12] S. M. Mueller et al. The vector floating-

point unit in a synergistic processor element of

a cell processor. In ARITH ’05: Proceedings of

the 17th IEEE Symposium on Computer

Arithmetic, pages 59–67, Washington, DC,

USA, 2005. IEEE Computer Society.

