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ABSTRACT: 

The paper introduces fine-grain clock gating schemesfor fused MAC-type floating-point units (FPU). 

Theclock gating is based on instruction type, precision andoperand values. The presented schemes 

focus on reducingthe power at peak performance, where each FPU stage isused in nearly every cycle 

and conventional schemes havelittle impact on the power consumption. Depending on theinstruction 

mix, the schemes allow to turn off 18% to 74%of the register bits. Even for the worst case instruction 

18%to 37% of the FPU are shut down depending on the dataPatterns. 

 

OVERVIEW: 

Considering, the new floating-point standard 

IEEE 754-2008 [8] fused multiply-add (FMA) 

A·C+B is introduced as mandatory operation. 

The product is computed at full precision; 

rounding only gets applied when adding 

together product and addend. The first FMA-

type floating-point unit (FPU) was introduced 

in 1990 [11] and since then many designs have 

been described in the literature [6, 9, 10, 12, 

15]. The main focus of all those design was to 

make the FPUs faster, but very little has been 

said about how to make such an FPU power-

efficient. In the last decade, the power 

consumption and the effort for cooling the 

processors and computer systems have become 

a major issue. In the embedded market and 

game console market, designers are fighting for 

every milli-Watt [16], and in the server 

business a big focus is put on green IT [7]. 

Even supercomputers are not just ranked by 

their FPU performance; the top-500 lists now 

also takes the power efficiency into account [5,  

 

17]. The most common way for saving power is 

to shut-down pieces of the hardware when they 

are not used. An effective approach for a 

pipelined design is to clock gate register stages 

that are idle [16].  

This paper describes how this mechanism can 

be applied to an FMA-type FPU, and that it is 

possible to shut down parts of the FPU even 

when the system is running at peak FPU 

performance. After an overview of the structure 

of an MAC design and its importance (Section 

1.1) and in section 1.2 we provide the basic 

block diagram of FMAC based FPU. 

Now we introduce the concept of clock gating 

(Section 1.2), we show how the standard clock 

gating schemes can be applied to such an FPU 

and which aspects need to be considered. We 
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then introduce new clock gating schemes into 

FMA-type FPUs, as used in recent products. 

Those schemes are instruction based, precision 

based, and data based clock gating; Sections 2, 

3 and 4 describe them in detail. For each of the 

schemes it is shown what percentage of the 

FPU can be shut down. 

LITERATURE SURVEY: 

1.1 Motivation 

     Now days, the demand for the high speed 

mobile wireless communications is rapidly 

growing. The Multiplier-Accumulator (MAC) 

operation is the key operation not only in DSP 

applications but also in multimedia information 

processing and various other applications. As 

mentioned above, MAC unit consist of 

multiplier, adder and register/accumulator.  

 In this project, we used 64 bit modified 

Wallace multiplier. The MAC inputs are 

obtained from the memory location and given 

to the multiplier block. This will be useful in 64 

bit digital signal processor. The input which is 

being fed from the memory location is 64 bit. 

1.11.1 Objective of project 

     A design of high performance 64 bit 

Multiplier-and-Accumulator (MAC) is 

implemented in this paper. MAC unit performs 

important operation in many of the digital 

signal processing (DSP) applications. The 

multiplier is designed using modified Wallace 

multiplier and the adder is done with carry save 

adder. The total design is coded with Verilog-

HDL and the synthesis is done using Cadence 

RTL complier using typical libraries of TSMC 

O.18um technology. The total MAC unit 

operates at 217 MHz The total power 

dissipation is 177.732 mW. 

1.11.2 Block Diagram                                                

 

Fig 1.1Block diagram of MAC 

1.12  Mac operation: 

 The Multiplier-Accumulator (MAC) 

operation is the key operation not only in DSP 

applications but also in multimedia information 

processing and various other applications. As 

mentioned above, MAC unit consist of 

multiplier, adder and register/accumulator. In 

this paper, we used 64 bit modified Wallace 

multiplier. The MAC inputs are obtained from 

the memory location and given to the multiplier 

block. This will be useful in 64 bit digital 

signal processor. The input which is being fed 

from the memory location is 64 bit. When the 

input is given to the multiplier it starts 

computing value for the given 64 bit input and 

hence the output will be 128 bits. The 

multiplier output is given as the input to carry 

save adder which performs addition. 

The function of the MAC unit is given by the 

following equation  

F = I PiQi 
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The output of carry save adder is 129 bit i.e. 

one bit is for the carry (128bits+1 bit). Then, 

the output is given to the accumulator register. 

The accumulator register used in this design is 

Parallel-In Parallel-Out (PIPO). Since the bits 

are huge and also carry save adder produces all 

the output values in parallel, PIPO register is 

used where the input bits are taken in parallel 

and output is taken in parallel. The output of 

the accumulator register is taken out or fed 

back as one of the input to the carry save adder. 

As shown in fig 1.1 the basic architecture of 

MAC unit.  

1.2 FMA Type Floating-point Unit BASED 

ON MAC DESIGN 

 

Figure 1: Representing the FPU 

Figure 1 illustrates the basic structure of a 

state-of-theart, 6-cycle FMA-type FPU. The 

aligner, multiplier, adder, normalizer and 

rounder mainly operate on the mantissa of the 

operands. The exponent and sign information is 

processed in the exponent dataflow, which also 

holds the FPU control. The operand registers 

hold the operands; they also include logic for 

pre-processing the operands, such as unpacking 

the operands into sign, exponent and mantissa. 

The multiplier computes the partial products 

for A·C and compresses them into two product 

vectors. In parallel, the aligner aligns the 

mantissa of the addend to that of the product; 

this requires very wide shifts. The adder then 

computes the sum or absolute difference of the 

two product vectors and of the aligned addend. 

It also determines the number of leading zeros 

in the adder result using leading-zero 

anticipator logic (LZA). The normalizer then 

shifts out the leading zeros and the rounder 

rounds the intermediate result to the required 

precision. As described in [14], it suffices to 

use an aligned addendand intermediate results 

which are 3 times as wide as the precision of 

the operands plus a few extra bits. For double 

precision operands, the product padded with 

two bits at either side for rounding is 110 bits 

wide, and the aligned addend with its 163 bits 

sticks out 53 bits to the left of the product 

(Figure 2). In order to save hardware, an adder 

is used for the trailing 110 bits and an 

incremented for the leading 53 bits. Both 

include re-complement logic for subtraction. 

The leading-zero-anticipator is only needed for 

the trailing 110 bits. The position of a leading 

one in the incremented part can be derived 

from the aligner shift amount. 
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Figure 2: Representing Adder split for a 

double-precision dataflow 

Apart from FMA-type operations which 

include A·C+B and derivate like A·C-B and -

A·C+B, FMA-type FPUs support various other 

floating-point instruction types, such as add, 

multiply, converts between integer and 

floating-point formats, compare operations, 

minimum and maximum function, and moves 

with potential sign manipulation. It also 

provides support for divide and square root. In 

some implementations, the FPU is also used for 

integer multiply and multiply-add operations.  

In order to keep the FPU design simple and 

small, all these instructions are mapped onto 

the FMA dataflow and are executed as FMA 

with some corrections. Multiply A·C, for 

example, can be executed as A·C+0, and a 

subtract A-B can be executed as A·1-B. For the 

converts, the product exponent is forced to a 

special value and a correction is applied to the 

least-significant input bits of the adder. 

Estimate instructions need special hardware 

such as tables and reuse only small parts of the 

FMA pipeline. Divide and square root 

operations can be implemented as a series of 

estimates and FMA operations.  

Multiple floating-point precisions are supported 

using an internal data format which is at least 

as wide as the largest supported precision. 

Input data are unpacked into the internal 

format; the result is rounded and packed into 

the desired result format. The packing and 

unpacking is independent of the executed 

instruction type. Thus, converts between 

different floating-point precisions can be 

treated as normalizing moves. 

 

Figure 3:LCB with clock gating support 

(conceptual) 

For each circuit of a design, power simulation 

tools can measure the switching power as a 

function of data switching factor on its data 

inputs (SF) and clock activity. Table 1 lists the 

switching power data for the 2-cycle aligner 

circuit of the presented FPU design; the 

estimated leakage power for the aligner 

contributes an additional 12 mW. 

For this aligner circuit, there is a switching 

power reduction by more than a factor of 300 

between worst and best case. Within each row 

and column an order of magnitude can be 

gained. Even if there is no switching at the 

inputs (SF=0), clock gating can reduce the 

switching power by about a factor 30. With 

high clock activity, the reduced switching 

factor still contributes to a substantial power 

saving.  

Assuming peak performance, i.e., every stage 

of the FPU is used in every cycle and an 

optimistic switching factor of 30%, the 

switching power is five times larger than the 

leakage power. This indicates that adding 

additional logic can be a net power reduction if 

it enables to significantly increase the clock 
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gating. The sum of all registers controlled by 

the same clock gating function is called clock 

domain. Each LCB only accepts a single clock 

gate signal. In other words, all register bits 

connected to the same LCB are in the same 

clock domain. Hence, increasing the number of 

clock domains leads to an increasing number of 

LCBs. Since LCBs use a significant amount of 

power, the power improvement by splitting a 

clock domain has to exceed the penalty 

introduced by the additional LCB. For the 

state-of-the-art CMOS SOI technology that is 

used here, a clock domain should contain at 

least 8 to 10 register bits.  

Timing puts another constraint to clock gating. 

As shown in Figure 3, the clock enable signals 

for the LCB have to be stable before the clock 

signal drops, to avoid glitches on the local 

clock net. The circuits computing the clock 

gating signals therefore have to be kept simple 

or use signals which are precomputed in the 

previous cycle.  

The power consumption depends not only on 

the implemented clock gating scheme, but also 

on the data switching, chip technology and 

register type. For the sake of simplicity, in this 

paper we use the number of clocked register 

bits as a measure for switching power.  

1.3. Clock gating Schemes  

Clock gating schemes used in previous designs 

include unit based clock gating [4] and stage 

based clock gating [1]. Unit based clock gating 

turns off the functional units that do not 

execute any instruction and stage based clock 

gating turns off the pipeline stages that do not 

hold a valid instruction. Unit based clock 

gating [4] is targeted at functional units 

consisting of several sub-units like integer units 

consisting of adder, shifter, and logic unit. In an 

FMA-type FPU, all instructions use the same 

basic data path. Hence, with such a coarse-

grain clock gating scheme, the whole FPU is 

either turned on or off and FPU switching 

power is only saved when no FPU instruction is 

in flight. Stage based clock gating [1] is a 

refinement of the previous scheme. Rather than 

whole units it activates each pipeline stage 

separately; only stages with valid instruction 

are active. This can also be applied to an FMA-

type FPU, and then saves power for idle FPU 

cycles. This paper focuses on reducing the 

power of heavily used FMA-type FPUs, where 

each FPU stage is used in nearly every cycle. In 

this scenario even stage based clock gating has 

little impact on the FPU power consumption. 

We therefore introduce three new clock gating 

schemes that are implemented in addition to 

stage based clock gating. Instruction based 

clock gating [2] extends the idea of unit based 

clock gating. For this, we partition the FPU 

data path into blocks that can be turned off 

independently. The borders of the blocks are 

chosen carefully such that no side effects are 

introduced. The details of instruction based 

clock gating are discussed in Section 2. 

In addition to the instruction type, the precision 

of the inputs and the outputs of an instruction 

can be used to reduce power. In a design that 

supports single and double precision, some 

blocks, e.g., parts of the multiplier, are not 

needed to compute single-precision results. 

Turning off blocks based on the precision of 

inputs or outputs is called precision based clock 

gating (Section 3). Section 4 describes data 
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based clock gating [2]. In addition to the 

instruction type, this clock gating scheme also 

looks at the input data to predict which parts of 

the unit will not have any impact on the result 

and can be turned off.  

EXIISTING TECHNIQUES: 

2. Instruction Based  

Clock gating for instruction based clock gating, 

the FPU is carefully partitioned into blocks that 

can be turned off independently. Some clock 

gating opportunities only arise if additional 

logic is introduced. In these cases the cost of 

the new logic has to be balanced with the 

power reductions gained by clock gating.  

2.1. Multiplier Bypass  

In high-frequency FPU designs, the multiplier 

is divided in two or more pipeline stages. That 

requires a lot of staging registers to store 

intermediate partial products and partial sums. 

In the presented 6-cycle FPU, the intermediate 

multiplier registers plus the operand register for 

multiplicand C account for over 25% of all 

register bits. Add-type instructions, for 

example, only use the multiplier to pass the A 

operand to the adder inputs by computing A·1. 

This wastes a lot of power. In order to turn off 

the intermediate registers of the multiplier, a 

multiplier bypass [3] is added to the FPU 

pipeline (Figure 4). This bypass can be used to 

either pass the fraction of A to the multiplier 

result or force the multiplier result to zero 

while the multiplier itself is clock gated. Since 

add-type instructions are not rare, the 

opportunity to disable about 25% of the 

registers bits leads to a considerable net power 

saving.  

2.2. Fixed-Point Result  

Bypass the instructions returning integer 

results, like float-to integer converts and integer 

multiply-add, require a significantly different 

post-processing of the intermediate adder result 

compared to instructions with floating-point 

results. Instead of normalization and rounding, 

the integer results require saturation. For timing 

reasons it is advantageous to create separate 

data paths for the two result types and merge 

the results in the final packing step (Figure 5). 

Any given instruction uses only one of the data 

paths and clock gatesthe other. In addition, the 

LZA which controls the normalizer shift 

amount can be clock gated for fixed-point 

results. Normalizer and LZA account for 6% of 

the registers and the fixed-point result logic for 

2%. 
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2.3. Partial Adder Bypass  

The logic used for the addition of product and 

addend is split into an adder and an 

incremented circuit (see figure 1). Some 

instruction types need only one of these 

circuits. Move-type instructions, for example, 

need no addition at all; they can use the 

incremented to pass the operand down to the 

next pipeline stages. On the other hand, 

instructions using the fixed-point result bypass, 

only need the output of the adder; the 

incremented part is not needed. In order to save 

power it is therefore advantageous to activate 

the adder (20% of the total register bits) and the 

incremented (about 5% of the total register bits) 

independently. The only interaction between 

these circuits is the carry bit from the adder to 

the incremented. Hence, the incremented can 

be turned off without impacting the adder. In 

order to turn off the adder and use only the 

incremented, the carry needs to be forced to a 

desired value. Also, instructions with floating-

point results must ensure that the normalizer 

does not read data from a disabled adder or 

incremented. 

PROPOSED MODEL: 

3. Precision Based Clock gating 

The presented FPU pipeline supports double-

precision (DP) and single-precision (SP) 

floating-point operations. Internally, all inputs 

are extended to a format with sign, 13- bit 

exponent, integer bit and 52-bit fraction. If the 

result of an instruction is an SP number the 

least significant bits of the adder and 

normalizer result are only used for the sticky 

bit computation. The sticky bit of the lower 

adder half is computed by the LZA. The sticky 

bit of the lower normalizer bits is pre-computed 

during the normalization for timing reasons. 

Hence, in case of an SP result, the lower half of 

the adder and normalizer result must not be 

computed. The latches only used to compute 

the lower result half’s can be clock gated. Note 

that this does not include the latches needed for 

the carry network of the adder. When 

converting SP inputs to the internal format, the 

least significant bits of the operands are set to 

zeros. Hence, the 9:2 reduction tree of the 

multiplier that uses the least significant bits of 

the C operand computes 0·A = 0. Instead of 

computing this with the reduction tree, the 

output of this tree is forced to zero and the 

intermediate registers are turned off. Since the 

lower half of the multiplier result is zero for SP 

inputs, it is possible to compute the sticky bit of 

the lower half of the adder result already in the 

aligner. This would allow to clock gate the 

lower part of the aligner output to the adder as 

well as the lower part of the LZA (which 

account for approximately 3.4% of the latches). 

This optimization would need modifications to 

the aligner sticky logic and the adder carry tree 

and was not implemented in the design. Table 4 

lists the clock domains that need to be activated 

for floating-point multiply-add instructions 

with different precision. The clock domains 

MR, AD and NR are divided into subdomains 

HI and LO, where the domain HI contains the 

registers that are needed by any precision and 

LO contains the registers that are only needed 

for double-precision operations. The table 

indicates that precision based clock gating 

reduces the number of clocked register bits for 

SP instructions by up to 11.9%. The precision 

based clock gating in the multiplier canalso be 
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used for fixed-point multiply-add instructions. 

Assuming that the fixed-point inputs are at 

most 32 bits wide, the multiplication of two 

inputs can be done without using the third 9:2 

reduction tree. This reduces the clock activity 

of fixed-point multiply-add instructions by 

7.9%. 

4. Data Based Clock gating  

In a double-precision, FMA-type FPU, the 

mantissa of the intermediate data is up to 163 

bits wide. For floating-point instructions like 

multiply-add, multiply, and add, it depends on 

the operand values whether the full 163-bit 

wide intermediate data are needed or whether 

the operation can do with portions of the data 

vectors. This section details how to detect these 

data dependent cases early in the pipeline and 

how this can be used to reduce the number of 

clocked registers.  

4.1. Special Inputs  

If one of the inputs of an arithmetic operation is 

a Nan or infinity, the result of the operation is 

computed using logic in the incremented and 

the Nan forwarding logic in the NN domain. 

The normalizer is forced to select the output of 

the incrementer. If none of the operands is a 

Nan or infinity, the NN domain, accounting for 

3.6% of the register bits, can be clock gated. 

The logic in the NN domain is not needed if at 

least one operand is infinity but no operand is a 

Nan. However, differentiating infinities from 

Nans requires a zero check on the fraction, 

whereas detecting Nan or infinity just requires 

an all-one check of the exponent. Turning off 

the NN domain for infinity-only operands 

would therefore increase the timing pressure on 

the activate signal for the NN domain. Since 

this case is assumed to be rare, it is not 

considered worthwhile; Nan and infinity cases 

are treated alike. For these cases, adder and 

leading-zero-anticipator can be gated; that are 

the domains AD and LZ which account for 

about 24% of the register bits. A multiply-add 

instruction where either the A or C operand is 

zero is treated like a move and the 

corresponding instruction based clock gating is 

applied. Otherwise, if the B operand is zero, the 

instruction is treated as a multiply. Similar 

optimizations apply for the multiply and add 

instruction types. Detection of zero operands 

requires nearly the whole first cycle, unless this 

information is already stored in the register file. 

The presented FPU has no special information 

in the register file. Thus, the zero operand 

information is too late for controlling the gating 

of the first cycle aligner and multiplier domains 

AL and MR. In case of zero product, adder and 

LZA are turned off (24% register bits), whereas 

for zero addend the incremented domain is 

gated (5% register bits).  

4.2. Operand Alignment 

If all inputs are finite, non-zero numbers, the 

aligner shifts the addend fraction based on the 

exponent difference of addend and product. 

The aligned addend, which is the result of this 

alignment shift, is partitioned into an 

incremented part which is sent to the 

incremented and an adder part which is sent to 

the adder (Figure 2). The width of the aligned 

addend is limited to 163 bits by special 

handling of the big shift amounts. If the addend 

is shifted out on the right, all bits shifted out are 

collected in an aligner sticky bit. If the addend 

is shifted out on the left, the shift amount is 
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ignored and the addend is forced into the 

incremented part of the aligned addend [14]. 

Based on the position of the input addend 

within the aligned addend, we distinguish three 

cases: in only, add only, and overlap (Figure 7). 

The case where the whole addend is placed in 

the incremented part of the aligned addend is 

called in only. Add only denotes the case where 

the input addend is fully contained in the adder 

part and the aligner sticky bit. The remaining 

case is called overlap. The case information is 

available in the middle of the second cycle, just 

in time for controlling the clock gating of the 

incremented and adder inputs. 

In the addonly case, the incrementer part of the 

aligned addend consists of all zeros. Thus, the 

incrementer part of the addend does not 

contribute to the sum or absolute difference of 

product and aligned addend. The normalizer 

only needs to consider the adder output and 

normalize it based on the information provided 

by the leading-zero-anticipator. For this case, 

the incrementer domain IN can be turned off. 

 

In the in only case, the addend is much larger 

than the product. The final result is either 

addend B or B ± up, depending on the effective 

operation, on the rounding mode, and whether 

the product is non-zero. The adder part is only 

needed to provide the carry to the incremented 

and to compute the sticky information for 

rounding. Since the adder part of the aligned 

addend consists of all zeros, the sticky bit is 

one in case of a non-zero product, i.e., if neither 

A nor C is zero. On the other hand, a carry 

from the adder to the incremented is only 

produced in case of an effective subtraction 

with a zero product. Hence, both signals can be 

derived directly from the operands without 

using the adder or multiplier result. Thus, in the 

in only case, adder and LZA can be turned off. 

In the overlap case, both the incremented and 

the adder are needed. However, since the 

leading one of the result is in the incremented 

part, the normalizer shift amount is derived 

from the aligner shift amount; the leading zero 

count of the adder result is not needed. The 

normalizer shift amount is at most 53, and 

therefore the lower half of the adder only 

contributes to the sticky bit (similar to SP 

results described in section 3). The sticky bit 

information can be provided by the lower half 

of the leading-zero-anticipator logic. Thus, the 

lower half of the adder result computation 

(excluding the carry tree which impacts the 

upper half) and the upper half of the LZA can 

be turned off.  

Table 5 summarizes the impact of data based 

clock gating for a double-precision multiply-

add instruction. Both the adder domain AD and 

the leading zero anticipator domain LZ are split 

up in an upper half HI and a lower half LO. In 

the overlap case, data based clock gating 

reduces the number of clocked registers by 

8.3%. In the in only case, data based clock 

gating reduces the number of clocked registers 

even by 27.2%. 
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SIMULATION RESULTS: 

 

 

1 Benefits 

 The  MAC  unit  operates completely  

independent  of  the  CPU 

  It can process data separately and 

thereby reduce CPU load.   

 The application  like  optical  

communication  systems which  is  

based  on  DSP ,  require  extremely  

fast processing  of  huge  amount  of  

digital  data 

 

 

Fig.(a) power dissipation  

 Fig.(b) delay 

 

Fig. (c) cell area 

CONCLUSION: 

Traditional clock gating approaches reduce 

FPU power consumption if no instructions are 

executed, or at best, reduce the power 

consumption for the idle cycles between 

subsequent instructions. In numerical 

applications with highly optimized floating-

point routines these traditional clock gating 

schemes are not efficient for the FPU. We have 

developed new clock gating schemes that 

address exactly this scenario, i.e., they save 

power even if the FPU executes an instruction 

every cycle. The schemes clock gate parts of 

the FPU based on instruction type, precision, 

and operand values. Table 6 lists for every 

instruction type and precision the minimum and 

maximum percentage of register bits that are 

enabled if the three clockgating schemes are 
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applied. The percentage of active register bits is 

a good indication for the switching power. 

 

The table indicates that executing a workload in 

single precision (SP) instead of double-

precision (DP) reduces the clock activity by up 

to 9%. It further shows that for compare 

operations 74% of the register bits can be 

disabled. Floating-point additions can clock 

gate at least 41% of the register bits and 

floating-point multiply instructions at least 

24%. Even double-precision floating-point 

multiply-adds, which are the most energy 

consuming instructions, can shut off between 

18% and 27% of the register bits. For these 

instructions, between 8% and 17% are disabled 

by data based clock gating; the remaining 10% 

are disabled by instruction based clock gating. 

Note that for area and power efficient designs, 

it is better to avoid extra hardware rather than 

to clock gate it. The goal is therefore to map all 

instructions efficiently on the FMA dataflow. 

The fact that only 10% of all register bits are 

never used for DP FMA operations is an 

indicator for the efficiency of the overall FPU 

design. In our case, extra hardware was spent 

for the estimate dataflow, fixed-point saturation 

logic, and the multiplier bypass. The latter was 

introduced since it allows add-type instructions 

to disable 25% of the FPU. Even in such an 

optimized FPU design, our clock gating 

schemes significantly reduce the switching 

power. 

REFERENCES  

[1] C. M. Abernathy, G. Gervais, and R. 

Hilgendorf. Method and apparatus for dynamic 

power management in an execution unit using 

pipeline wave flow control. United States 

Patent 7,137,013, November 2006.  

[2] S. H. Dhong, S. M. Mueller, and H.-J. Oh. 

Power saving in FPU with gated power based 

on opcodes and data. United States Patent 

7,137,021, November 2006.  

[3] S. H. Dhong, S. M. Mueller, H.-J. Oh, and 

K. D. Tran. Power saving in a floating point 

unit using a multiplier and aligner bypass. 

United States Patent 7,058,830, June 2006. [4] 

M. A. Filippo. Clock control of functional units 

in an integrated circuit based on monitoring 

unit signals to predict inactivity. United States 

Patent 6,983,389, January 2006.  

[5] Green500.org. The green500 list, June 

2008. http://www.green500.org/lists.php. [6] T. 

N. Hicks, R. E. Fry, and P. E. Harvey. Power2 

floatingpoint unit: architecture and 

implementation. IBM Journal of Research and 

Development, 38(5):525–536, 1994.  

[7] IBM. Green IT, 2008. 

http://www.ibm.com/ibm/green/index.shtml.  

http://www.ibm.com/ibm/green/index.shtml


Volume 07, Issue 02, February 2018                      ISSN 2456 – 5083 Page 646 

[8] IEEE Task P754. IEEE 754-2008, Standard 

for FloatingPoint Arithmetic. Aug. 2008.  

[9] R. M. Jessani and C. H. Olson. The 

floating-point unit of the PowerPC 603e 

microprocessor. IBM Journal of Research and 

Development, 40(5):559–566, 1996.  

[10] T. Lang and J. D. Bruguera. Floating-point 

fused multiplyadd with reduced latency. 

Computer Design, International Conference on, 

0:145, 2002.  

[11] R. K. Montoye, E. Hokenek, and S. L. 

Runyon. Design of the IBM RISC System/6000 

floating-point execution unit. IBM Journal of 

Research and Development, 34(1):59–70, 1990.  

[12] S. M. Mueller et al. The vector floating-

point unit in a synergistic processor element of 

a cell processor. In ARITH ’05: Proceedings of 

the 17th IEEE Symposium on Computer 

Arithmetic, pages 59–67, Washington, DC, 

USA, 2005. IEEE Computer Society. 

 


