

Volume 07, Issue 02, February 2018 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2018 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 24
th

 February 2018. Link :

http://www.ijiemr.org/downloads.php?vol=Volume-7&issue=ISSUE-2

Title: LDPC Decoders for the design and implementation of high performance and low

cost techniques.

 Volume 07, Issue 02, Page No: 611 - 617

Paper Authors

*RAMESWARAPU KIRANMAYI, P.NAGARAJU.

* Dept of ECE, Kakinada Institute of Engineering & Technology.

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar

Code

Volume07, Issue02, February2018 ISSN: 2456 - 5083 Page 618

LDPC DECODERS FOR THE DESIGN AND IMPLEMENTATION OF HIGH

PERFORMANCE AND LOW COST TECHNIQUES

*RAMESWARAPU KIRANMAYI, **P.NAGARAJU

*PG Scholar, Vlsd, Dept of ECE, Kakinada Institute of Engineering & Technology, Korangi, A.P.

**Associate Professor, Dept of ECE, Kakinada Institute of Engineering & Technology, Korangi, A.P

ABSTRACT:

As a result of technology scaling and higher integration densities there may be variations in

parameters and noise levels which will lead to larger error rates at various levels of the computations.

As far as memory applications are concerned the soft errors and single event upsets are always a

matter of problem. The paper mainly focuses on the design of an efficient Multi Detector/Decoder

(MLDD) for fault detection along with correction of fault for memory applications, by considerably

reducing fault detection time. The error detection and correction method is done by one step majority

logic decoding and is made effective for Euclidean Geometry Low Density Parity Check Codes (EG-

LDPC). Even though majority decodable codes can correct large number of errors, they need high

decoding time for detection of errors and ML Decoding method may take same fault detecting time for

both erroneous and error free code words, which in turn delays the memory performance. The

proposed fault-detection method can detect the fault in less decoding cycles (almost in three). When

the data read is error free, it can obviously reduce memory access time. The technique keeps the area

overhead minimal and power consumption low for large code word sizes.

Keywords: one step majority logic decoding; error correction codes (ECCs); Euclidean geometry

low-density parity check (EG- LDPC); memory;control logic.

INTRODUCTION

Memories are the most universal component

today. For more than a decade, memory cells

have been protected from soft errors. Some

type of embedded memory, such as ROM,

SRAM, DRAM, flash memory etc is seen in

almost all system chips. Now days, the

memory failure rates are increasing due to the

impact of technology scaling-smaller

dimensions, high integration densities, lower

operating voltages etc.[4],[5]. The ability to

quickly determine that a bit has flipped is key

to high reliability and high availability

applications. Some commonly used error

detecting techniques are Triple Modular

Redundancy (TMR) and Error Correction

Codes (ECCs).

The TMR triplicates all the memory parts of

the system and to choose the correct data using

a voter. This method have disadvantage of

large area and complexity overhead of three

times. Therefore the ECC became the best way

to mitigate soft errors in memory [4].

The most commonly used ECC codes are

Single Error Correction (SEC) codes that can

Volume07, Issue02, February2018 ISSN: 2456 - 5083 Page 619

correct one bit error in a memory word. Due to

consequence of augmenting integration

densities, there is an increase in soft errors

which points the need for higher error

correction capabilities [1], [3]. More advanced

ECCs have been proposed for memory

applications but even Double Error Correction

(DEC) codes with a parallel implementation

incur in a significant power consumption

penalty. The usual multierror correction codes,

such as Reed- Solomon (RS) or Bose

Chaudhuri-Hocquenghem (BCH) are not

suitable for this task due to complex decoding

algorithm.

Cyclic block codes have the property of

being majority logic (ML) decodable.

Therefore cyclic block codes have been

identified as more suitable among the ECC

codes that meet the requirements of higher

error correction capability and low decoding

complexity. Euclidean geometry low-density

parity check (EG-LDPC) codes, a subgroup of

the low-density parity check (LDPC) codes,

which belongs to the family of the ML

decodable codes, is focused here.

The advantages of ML decoding are that it is

very simple to implement and thus it is very

practical and has low complexity. The

drawback of ML decoding is that, it needs as

many cycles as the number of bits in the input

signal, which is also the number of taps, N, in

the decoder and also same decoding time for

both error and error free code words. This is a

great impact on the performance of the system,

depending on the size of the code.

Another alternative is to first detect if there

are errors in the word and only perform the rest

of the decoding process when there are errors.

This greatly reduces the average power

consumption as most words will have no

errors. Error detection in a block code can also

be implemented by computing the syndrome

and checking whether all its bits are zero [15].

By calculating the syndrome, we can

implement a fault detector for an ECC is but

this also would add an additional complex

functional unit. This paper focus on using the

MLD circuitry itself as an error detecting

module therefore with no additional hardware

the read operations could be accelerated.

The remainder of this paper is organized as

follows. Section II gives an overview of

existing ML decoding solutions. Section III

presents the novel ML detector/decoder

(MLDD)

using EG- LDPC cyclic codes. Section IV

discusses the results obtained in respect to

speedup, delay and power consumption.

Finally, Section V discusses conclusions and

future work.

II. MAJORITY LOGIC DECODING

(MLD) SOLUTONS

One-step majority-logic correction is a fast

and relatively efficient error-correcting

technique [6]. One-step-majority correctable

ECC codes are limited which include type-I

two-dimensional EG-LDPC.

Volume07, Issue02, February2018 ISSN: 2456 - 5083 Page 620

The memory system schematic shown in

Figure 1 show that the word is first encoded

and is then written to the memory [2]. After the

reading process of the memory it is passed to a

majority logic detector block which detects and

corrects the errors which occurred while the

reading code word.

Figure 2: existed plain ML decoder

This type of decoder can be implemented in

two ways. The first one is called the Type-I

ML decoder, which determines the bits need to

be corrected from the XOR combinations of

the syndrome, [9]. The Type-II ML decoder

that calculates the information of correctness

of the current bit under decoding, directly out

of the codeword bits [6]. Both are quite

similar, but when implementation is considered

the Type-II uses less area, since it does not

have a syndrome calculation as an intermediate

step. For this reason the paper focus on this

type II implementation.

A. Existent Plain ML Decoder

One-Step Majority-Logic Corrector: One-

step majority logic correction is the process in

which from the received codeword itself the

correct values of each bit under decoding can

directly found out. This method consists of

mainly two steps- 1) Generating a specific set

of linear sums of the received vector bits using

the xor matrix 2) Determining the majority

value of the computed linear sums. It is the

majority logic output which determines the

correctness of the bit under decoding. If the

majority output is '1', then the bit is inverted,

otherwise would be kept unchanged.

As described before, the ML decoder is

powerful and simple decoder, which has the

capability of correcting multiple random bit-

flips depending on the number of parity check

equations. It consists of four parts: 1) a cyclic

shift register; 2) an XOR matrix; 3) a majority

gate; and 4) an XOR for correcting the

codeword bit under decoding. The circuit

implementing a serial one-step majority logic

corrector [6], [12] for (15, 7, 5) EG-LDPC

code is shown in Figure 2.

The cyclic shift register is initially stored

with the input signal x and shifted through all

the taps. The results {Bj} of the check sum

equations from the XOR matrix is calculated

from the intermediate values in each tap. In the

Nth cycle, the result would reach the final tap,

producing the output signal, which is the

decoded version of input [2].

Figure 2. Serial one-step majority logic

corrector for (15, 7, 5) EG-LDPC code

This is the situation of error free case. The

input x might correspond to wrong data

corrupted by a soft error or SEUs. The decoder

Volume07, Issue02, February2018 ISSN: 2456 - 5083 Page 621

is designed to handle this situation as follows.

From the parity check sum equations

hardwired in the xor matrix the decoding starts

at the very next moment after the codeword x

are loaded into the cyclic shift register. The

linear sum outputs {Bj} is then forwarded to

the majority logic circuit which determines the

correctness of the bit under decoding. If the

majority of the Bj bits are "1" that is greater

than the majority number of zeros then the

current bit is erroneous and should be

corrected, otherwise it is kept unchanged.

The process is repeated and contents of the

shift registers are rotated up to the whole N bits

of the codeword are processed. When all the

parity check sums outputs are zero the

codeword is correctly decoded. Further details

on how this algorithm works can be found in

[6], [12]. The whole algorithm [2] is depicted

in Figure 3. The algorithm needs as many

cycles as the number of bits in the input signal,

which is number of taps, N, in the decoder and

also needs same decoding time for both error

and error free code words.

PROPOSED MULTI-

DETECTOR/DECODER

A novel version of the MD decoder for

improving performance is presented here. With

reference to the original ML decoder, the

proposed MD detector/decoder (MDD) has

been implemented using the Hamming and

parity check (HMPC) and general decoder.

This proposed design uses much more easy

way implementation for detecting and

correcting.

The proof of the hypothesis that all error will

be detected in eight cycles is very simple from

the mathematical point of view. It is practical

to generate and check all possible error

combinations for codes with small words and

affected by a small number of bit flips. When

the size of code and the number of bit flips

increases, it is difficult to exhaustively test all

possible combinations. Therefore the

simulations are done in two ways, the error

combinations are exhaustively checked when it

is feasible and in the rest of the cases the

combinations are checked randomly.

A. Design structure of the encoder

The encoder and corrector are two

different operation that is used which

randomly checking the memory but in

this case we have considered a

generalized encoder (3:8 or convolution

encoder) which can encode the data (as

shown in figure). As per the corrector we

have the hamming parity check where

each code data is divided into sub sectors

which enables to check the parity based

on the division and then compared to its

original value. Considering the original

value will equal to the expected corrected

value results in correction successfully.

B. Design Structure of Decoder

The decoder and detector structure have

been shown in the figure. The decoder

design is a complex design based on the

(BCH decoder/Hamming decoder) which

comprises of the received signal and

error position from the detector. So hence

based on the position and no of the errors

found in the given sequence of the data is

decoded accordingly.

Volume07, Issue02, February2018 ISSN: 2456 - 5083 Page 622

Figure: representing the correction and

detection of memory

Figure: Representing the encoding and

decoding of the memory.

Simulation Results:

Sno Input/Output Error Detection With Error Without error

1 Existing Technique N N+2 N+2

2 Proposed Technique logn

Technique Total Power Consumption

Proposed MDDD 30 mW

Existing MLD 49 mW

Number of Cycles

Volume07, Issue02, February2018 ISSN: 2456 - 5083 Page 623

CONCLUSIONS:

The paper focuses on the design of a Multi

Decoder/Detector (MDD) for fault detection

along with correction of fault, suitable for

memory applications, with reduced fault

detection time.

From the simulation results, (A codeword of

size 8 is chosen here for designing), when

compared to the existing MLD, The proposed

MLDD has comparatively less delay of 12.578

ns and can detect the presence of errors in just

8 cycles even for multiple bit flips.

It has found that for error detection and

correction (for codeword of 15), when

comparing to the existing technique, a speed up

of about 1100 ns is obtained when there is no

errors in data read access. It's because the fault

detection needs only three cycles and after the

detection of an error free condition, the

codeword is passed to the output without

further corrections. This is a great saving of

time since most of the situations the memory

read access does not make errors. Therefore

there is a considerable reduction in the memory

access time.

The proposed MDD have about 10% low

power consumption than the existing MLD

technique, since the proposed design detects the

faults in just three cycles. Therefore a large no.

of clock cycles (here 12 clock cycles) are saved

and hence considerable reduction in power is

achieved.

MDD error detector is designed as it is

independent of the code word size and

inference about area is that for large values of

code word size, the area overhead of the

Volume07, Issue02, February2018 ISSN: 2456 - 5083 Page 624

MLDD actually decreases with respect to the

plain MLD technique. i.e., for large values of

code word size both areas are practically the

same. Therefore the proposed MDD will be an

efficient design for fault detection and

correction

The future research is to focus on the

application oriented implementation of MLDD

to memories and also by changing the internal

architecture of majority gate we can obtain a

more efficient, low power and low area MLDD.

REFERENCES:

 [1] M. Karkooti and J. R. Cavallaro, “Semi-

parallel reconfigurable architectures for real-

time LDPC decoding,” in Proc. of Int. Conf. on

Inf. Technology: Coding and Computing

(ITCC), vol. 1, 2004, pp. 579–585.

 [2] X. Chen, J. Kang, S. Lin, and V. Akella,

“Memory system optimization for FPGA-based

implementation of quasi-cyclic LDPC codes

decoders,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 58, no. 1, pp.

98–111, 2011.

 [3] V. A. Chandrasetty and S. M. Aziz,

“Resource efficient LDPC decoders for

multimedia communication,” INTEGRATION,

the VLSI journal, vol. 48, pp. 213–220, 2015.

[4] K. Zhang, X. Huang, and Z. Wang, “High-

throughput layered decoder implementation for

quasi-cyclic LDPC codes,” IEEE Journal on

Selected Areas in Communications, vol. 27, no.

6, pp. 985–994, 2009.

[5] X. Peng, Z. Chen, X. Zhao, D. Zhou, and S.

Goto, “A 115mW 1Gbps QC-LDPC decoder

ASIC for WiMAX in 65nm CMOS,” in IEEE

Asian Solid State Circuits Conference (A-

SSCC), 2011, pp. 317–320.

[6] B. Xiang, D. Bao, S. Huang, and X. Zeng,

“An 847–955 Mb/s 342–397 mW dual-path

fully-overlapped QC-LDPC decoder for

WiMAX system in 0.13 µm CMOS,” IEEE

Journal of Solid-State Circuits, vol. 46, no. 6,

pp. 1416–1432, 2011.

[7] E. Boutillon and G. Masera, Channel

coding: Theory, algorithms, and applications.

Elsevier, 2014, ch. Hardware Design and

Realization for Iteratively Decodable Codes,

pp. 583–642.

[8] S. K. Planjery, S. K. Chilappagari, B. Vasic,

D. Declercq, and L. Dan- ´ jean, “Iterative

decoding beyond belief propagation,” in IEEE

Information Theory and Applications

Workshop (ITA), 2010, pp. 1–10.

[9] S. K. Planjery, D. Declercq, L. Danjean,

and B. Vasic, “Finite alphabet iterative

decoders for LDPC codes surpassing floating-

point iterative decoders,” IET Electronics

Letters, vol. 47, no. 16, pp. 919–921, 2011.

[10] ——, “Finite alphabet iterative decoders –

part I: Decoding beyond belief propagation on

the binary symmetric channel,” IEEE

Transactions on Communications, vol. 61, no.

10, pp. 4033–4045, 2013.

[11] J. Chen, A. Dholakia, E. Eleftheriou, M.

Fossorier, and X. Hu, “Reduced-complexity

decoding of LDPC codes,” IEEE Trans. on

Communications, vol. 53, no. 8, pp. 1288–
1299, 2005.

[12] V. Savin, Channel coding: Theory,

algorithms, and applications. Elsevier, 2014,

ch. LDPC Decoders, pp. 211–260.

