

A Peer Revieved Open Access International Journal

www.ijiemr.org

COPY RIGHT

2018 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. No Reprint should be done to this paper, all copy right is authenticated to Paper Authors

IJIEMR Transactions, online available on 11th Febraury 2018. Link:

http://www.ijiemr.org/downloads.php?vol=Volume-7&issue=ISSUE-02

Title: Design A Multiplier Using Dual Modified Adaptive Technique.

Volume 07, Issue 02, Page No: 249 – 253.

Paper Authors

*G MADHUSUDHANA RAO, P JAYA BABU, M. CHAITANYA.

* Dept. of ECE, N.V.R College of Engineering and Technology

USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

A Peer Revieved Open Access International Journal

www.ijiemr.org

DESIGN A MULTIPLIER USING DUAL MODIFIED ADAPTIVE TECHNIQUE

¹G MADHUSUDHANA RAO, ²P JAYA BABU, ³M. CHAITANYA

¹H.O.D, Dept. of ECE, N.V.R College of Engineering & Technology, Tenali, A.P ²M.Tech Incharge, Dept. of ECE, N.V.R College of Engineering & Technology, Tenali, A.P ³M.Tech Scholar, Dept. of ECE, N.V.R College of Engineering & Technology, Tenali, A.P

ABSTRACT— Basically, digital multipliers are the functional units of arithmetic unit. The entire performance of the system is based on the throughput of multiplier. For an n-bit by n-bit multiplication we use n-bit by n-bit multiplier. To complete the process of multiplication 'K' cycles are needed and they are terminated as zeros or ones. So in this paper we are going to discuss about the dual modified Adaptive technique. This proposed technique generates the M, N and interconnected blocks. In this each block consists of gates. TheMainintent of this technique is to reduce the number of cycles from 32 bit by 32 bit multiplications. Fro the purpose of 32 bit by 32 bit multiplication, an 32 nit by 32 bit multiplier is proposed. This proposed technique occupies less area and reduces the delay.

I.INTRODUCTION

important task for microprocessors and DSP processors is to design a cost effective multiplier. For achieving, the major objectives are Area, delay, and power consumption. Parallel implementations can use more area and consume more power but which result in a fast multiplier. The serial implementations are using less area and consuming less power, but result in a slow multiplier. A 32-bit by 8-bit Booth multiplier is employed and spends 4 cycles for carrying a 32-bit by 32-bit multiplication. This implementation, significant a balance among power, delay and area, requires more cycles to perform a multiplication, but it takes much less time for each cycle and requires less area than a 32-bit by 32-bit parallel multiplier.

In order to perform correctly traditional circuits use critical path delay as the overall circuit clock cycle. However, the probability that the critical paths are activated is low. In many cases, the path delay is shorter than the critical path. The critical path delay is used as the overall cycle period which will result in significant timing waste. Hence, to reduce the timing waste of traditional circuits the variable-latency design was introduced.

Booth multiplier and thereby minimizes the effect of glitches.

The extra delay and power consumption can be minimized if the exchange logic is made simple. Note that from the operand source registers to the multiplicand and multiplier registers the extra delay is added to that path. If this path is not originally a critical path, then extra delay would have a limited influence on the multiplier performance. Although, if the path is a critical one then exchanging of the two operands can be performed subsequently multiplicand and multiplier registers are loaded with the two operands. But this change in the architecture would make the glitches caused by the exchange logic propagate through the multiplier. All these techniques perform the exact computation and modules produce the correct result. Accuracy of the module device is always 100% in exact computing. But exact computing has one major drawback. It is impossible to optimize all the parameters of the circuit in exact computing. However, exact computing is not essential for every application. There are some applications like image processing and

A Peer Revieved Open Access International Journal

www.ijiemr.org

multimedia can tolerate errors and provide meaningful results.

Inexact (approximate) computing techniques have become popular because of its low complexity and less power consumption. Inexact computing produces reasonable result, even it has low accuracy. In approximate computing, the value of error rate (ER), error distance (ED) and normalized error distance (NED) play an important role to calculate the final output. Error rate is given by a number of erroneous outputs over the total number of outputs. Error Distance is the arithmetic distance among an erroneous output and the correct one. Normalized Error Distance is the ratio of mean error distance over all inputs by maximum input of the circuit. Several approximation techniques for adders and multipliers.

The normal addition rule is applied in accurate part whereas a special method of addition takes place in inaccurate part. Output "sum" value is calculated normally when any one of the operand value of adder is "0". When both operands are "1", "sum" value can be fixed as "1" from that bit position to least significant bit. This technique is used to minimize the error distance of the adder.

In load demand and renewable generation because of day-ahead forecast error, there exists inevitable deviation between real time operation and day-ahead generation schedules. Especially in the recent years, the penetration increasing of intermittent aggravated the situation and resources confronted the system with high variability and uncertainty. This poses great challenges on the secure and reliable operation of power systems. One alternative to solve this problem intra-carry is to introduce generation scheduling (ICGS), which fills the gap between day-ahead generation schedules and real-time operation and serves as an effective tool for optimal dispatch over a look-ahead time horizon. By enforcing ICGS, we can reschedule the conventional generation units with the latest forecast information to meet the net load in a more cost-effective way.

II. LITERATURE SURVEY

When shorter paths are frequently activated, then the average latency in the variable-latency design is better than that of traditional designs. For example, speculation techniques are used by many variable-latency adders with error detection and recovery. In addition, the critical paths are divided into two shorter paths that could be unequal. The clock cycle is set to the delay of the longer one. To improve performance, these research designs were able to reduce the timing waste of traditional circuits but they did not consider the aging effect. During the runtime it could not adjust themselves.

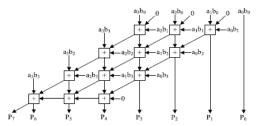


Fig 1. 4x4 Normal Array Multiplier

An improvement method of the normal array multiplier (AM) is a Column By-passing Multiplier. The AM is a fast parallel multiplier and is shown in above Fig. 1. The multiplier array contains (n-1) rows of carry save adder (CSA). Each row contains (n-1)full adder (FA) cells. In the CSA array, each FA has two outputs: 1) the sum bit goes down and 2) the carry bit goes to the lower left FA. The last row is a ripple adder for carry propagation. In the AM the FAs are always active without regarding of input states. In a low-power column-bypassing multiplier design the FA operations are disabled if the corresponding bit in the multiplicand is 0.

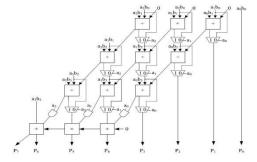


Fig.2 Column-Bypassing Multiplier

A Peer Revieved Open Access International Journal

www.ijiemr.org

The above Fig. 2 shows a 4×4 column-bypassing multiplier. For example, let us assume the inputs are 10102 * 11112, it can be noted that for the FAs in the first and third diagonals, two of the three input bits are 0. Therefore, in both diagonals the output of the adders is 0, and the output sum bit is simply equal to the third bit, which is the sum output of its upper FA.

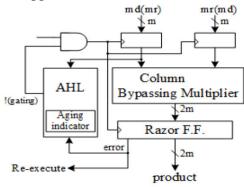


Fig. 3 Existed System Block Diagram

In the existed system architecture, the column- and row-bypassing multipliers can be examined by the number of zeros in either the multiplicand or multiplicator. It is to predict whether the operation requires one cycle or two cycles to complete. When there are random input patterns, the number of zeros and ones in the multiplicator and multiplicand follows a normal distribution.

Hence, By using similar architecture the two aging-aware multipliers can be implemented. The difference between the two bypassing multipliers lies in the input signals of the AHL. The input signal of the AHL in the column-bypassing architecture with the multiplier is the multiplicand, whereas that of row-bypassing multiplier multiplicator. Razor flip-flops can be used to detect whether timing violations occur before the next input pattern arrives. Fig. 3 shows the details of Razor flip-flops. A main flipflop, shadow latch, XOR gate and mux are included in a 1-bit Razor flip-flop. The main flip-flop catches the execution result by using a normal clock signal. The shadow latch catches the execution result using a delayed clock signal, which is slower than the normal clock signal. If the latched bit of the shadow

latch is different from that of the main flipflop, then the path delay of the current operation exceeds the cycle period and the main flip-flop catches a result which is incorrect. When errors occur, the Razor flipflop will set the error signal to 1 to notifying the system to reexecute the operation and notify the AHL circuit that an error has occurred. Razor flip-flops are used to detect whether an operation which is considered to be a one-cycle pattern can really finish in a cycle. If not, the operation is reexecuted with two cycles. Although the reexecution may seem costly, if the reexecution frequency is low then overall cost is low. In the agingware variable-latency multiplier the key component is AHL circuit. The AHL circuit consists of an aging indicator, two judging blocks, one mux, and one D flip-flop. The aging indicator used for indicating whether circuit has suffered significant performance degradation due to the aging effect. In a simple counter the aging indicator is implemented to counts the number of errors over a certain amount of operations and it is reset to zero at the end of those operations. The column- or row-bypassing multiplier is not able to complete these operations successfully, if the cycle period is too short, causing timing violations.

III. PROPOSED SYSTEM

According to the input logics, the gates of in the Dual Modified adaptive multiplier are always active. The operations in the Dual Modified adaptive multiplier design are disabled if the corresponding bit in the multiplicand is 0.

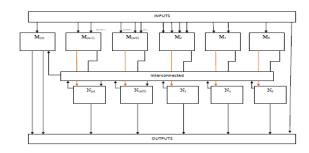


Fig 4. 4x4 High Performance Dual Modified Adaptive Multiplier.

A Peer Revieved Open Access International Journal

www.ijiemr.org

In above figure M_0 , M_1 , M_2 , _ _ _ , M_n done their operation and outputs are given to the interconnected block Nand simultaneously. Depends on the priority in the operation the Dual modified adaptive gives the N-block output to interconnected block and vice versa. Hence, in both diagonals the output of the adders is 0 and the sum bit which is output equal to the third bit. Fig 4. Shows the 4*4 high performance Dual Modified adaptive multiplier which uses the Critical path cycle as an execution cycle period. Dual modified adaptive multiplier reduces the timing waste which occurred in traditional circuits. We can execute a shortest path by using Dual modified adaptive. The architecture is extended upto 32*32 bits.

Dual Modified adaptive is extensively acquired in multipliers because it can reduce the number of partial product rows to be added. Thus, Dual Modified adaptive is used for reducing the size and enhancing the speed of the reduction tree. The least significant bit position of the each partial product row encoding gives an irregular partial product array and a complex reduction tree. Hence, the Dual Modified adaptive multipliers with partial product array produce a very high speed.

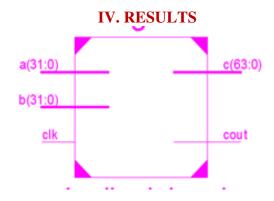


Fig 5. Rtl Schematic Of Dual Modified Adaptive Multiplier.

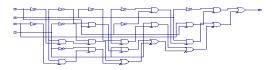


Fig 6. Lut In Technical Schematic Of Dual Modified Adaptive Multiplier.

Fig 5. Shows the RTL schematic and Fig.6 shows the Look Up Table (LUT) in technical schematic of high performance of the Dual Modified adaptive multiplier.

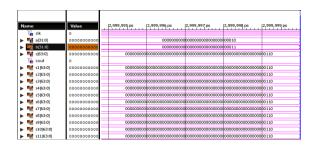


Fig 7. Output Waveform.

COMPARISION TABLE:

	AREA	DELAY
EXISTED	497	134
SYSTEM		
PROPOSED	380	104
SYSTEM		

V.CONCLUSION

Here an AHL multiplier is designed by using variable latency multiplier. By using this variable latency multiplier we can reduce the delay which is occurred in the system. It not only decrease the delay but also moderates the entire system performance. Coming to the proposed technique, this reduces the number of execution cycles for 32-bit by 32-bit mulplications. Because of this reduction, the system operation occupies low area and produces low delay. The proposed technique that is dual modified adaptive which generates M, N and interconnected blocks.

A Peer Revieved Open Access International Journal

www.ijiemr.org

Each block consists of gates and rows. Compared to the existed system, the proposed system is more effective and requires less memory to save.

VI.REFERENCES

- [1] D. Liu Embedded DSP Processor Design, 1st ed.Morgan Kaufmann Publishing, 2008.
- [2] K. K Parhi VLSI Digital Signal Processing Systems:Design and Implementation., 1st ed.John Wiley and Sons, 1999.
- [3] Y.Kim, Y.Zhang, and P. Li, "An energy efficient approximate adder with carry skip for error resilient neuromorphic VLSI systems," in proc. of International conference on Computer-Aided Design (ICCAD), Nov. 2013, pp. 130-137.
- [4] A. Pishvaie, G. Jaberipur, and A. Jahanian, "Improved CMOS (4; 2) compressor designs for parallel multipliers," Computers and Electrical Engineering, vol. 38, no. 6, pp. 17031716, Nov. 2012.
- [5] D. Baran, M. Aktan, and V.G. Oklobdzija V.G, "Energy Efficient Implementation of Parallel CMOS Multipliers with Improved Compressors," in proc. ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED), Aug. 2010, pp. 147-152.
- [6] S. Veeramachaneni, K. Krishna M, L. Avinash, S. R. Puppala, and M.B. Srinivas, "Novel Architectures for High-Speed and Low-Power 3-2, 4-2 and 5-2 Compressors," in proc. of International Conference on VLSI Design (VLSID), Jan. 2007, pp. 324-329.
- [7] R. Menon, and D. Radhakrishnan, "High performance 5: 2 compressor architectures," in proc. of IEE Circuits, Devices and Systems, vol. 153, no. 5, Oct. 2006, pp. 447-452.
- [8] A. Calimera, E. Macii, and M. Poncino, "Design techniques for NBTItolerant powergating architecture," *IEEE Trans. Circuits Syst.*, *Exp. Briefs*, vol. 59, no. 4, pp. 249–253, Apr. 2012.
- [9] K.-C. Wu and D. Marculescu, "Joint logic estructuring and pin reordering against NBTI-

- induced performance degradation," in *Proc. DATE*, 2009, pp. 75–80.
- [10] Y. Lee and T. Kim, "A fine-grained technique of NBTI-aware voltage scaling and body biasing for standard cell based designs," in *Proc. ASPDAC*, 2011, pp. 603–608.
- [11] M. Basoglu, M. Orshansky, and M. Erez, "NBTI-aware DVFS: A new approach to saving energy and increasing processor lifetime," in *Proc. ACM/IEEE ISLPED*, Aug. 2010, pp. 253–258.
- [12] K.-C. Wu and D. Marculescu, "Aging-aware timing analysis and optimization considering path sensitization," in *Proc. DATE*, 2011, pp. 1–6.
- [13] K. Du, P. Varman, and K. Mohanram, "High performance reliable variable latency carry select addition," in *Proc. DATE*, 2012, pp. 1257–1262.
- [14] A. K. Verma, P. Brisk, and P. Ienne, "Variable latency speculative addition: A new paradigm for arithmetic circuit design," in *Proc. DATE*, 2008, pp. 1250–1255.
- [15] D. Baneres, J. Cortadella, and M. Kishinevsky, "Variable-latency design by function speculation," in *Proc. DATE*, 2009, pp. 1704–1709.
- [16] Y.-S. Su, D.-C. Wang, S.-C. Chang, and M. Marek-Sadowska, "Performance" optimization using variable-latency design style," *IEEE Trans. Very Large Scale Integr.* (*VLSI*) *Syst.*, vol. 19, no. 10, pp. 1874–1883, Oct. 2011.